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Chapter 1: PHYS20141 Electromagnetism  Author: Zhiyu Liu  website: lluvioliu.io

1.1 Maxwell’s equations
(1) Divergence theorem fv V.vdV = JS v-dS. Stoke’s theorem fs Vxv-dS = 95L v-dL

1)Q= Jp r,t)dV,I = f] r,t)-dS. The conservation of charge Jv pdV=Q=-I= fS] -dS = JVV jdV=p+V-j=
. Deﬁne] =pv,I= de J] ds = fpv ndsS = nevdrlftIdS.
(2) Gauss’ law. The flux of electric field through a closed surface S is proportional to the amount of charge in a volume V that the
surface encloses. fs E-dS=0p=2=1 Iv pdV. ISE ds = JVV ‘EdV = V.E=Lp.

€0 €0 €0
(3) No magnetic monopoles. The flux of magnetic field through any closed surface is zero. fs B-dS=®5=0.V-B=0.
(4) Farady-Lenz law. The EMF induced in a closed loop is equal to the rate of change of magnetic flux linked in the loop.
E= —%CDB. ILE-dl = ISVXE-dS :—ISB-dS. Differential form VxE +B = 0.
(5) Ampere’s law. The circulation of the magnetic field around a closed loop L is proportional to the current passing through the
surface that the loop encloses. 99B ~dl=pg Y I; = po JS] -dS. Differential form V x B = pj.
eV:-VxB=0=V:j=0= ¢ =0= Only valid for time independent charge density.

(6) Ampere-Maxwell law. jegs = j +jdisp = j + €0E- 9€LB -dl = pq Js (] + EOE) -dS . Differential form V x B — poeoE = pioj.

:1 . :L 'B: E:L
JSE ds JV pdV V-E &P sourceless v 0. spatial v &P
) [;B-dS= 0 V.-B=0 VxE+B=0 V-B=0
£=-Lap VxE+B=0 4V E=Lp p B=-VxE
. - . . source imeX .
9€LB dl_yofs(]+eoE)-dS V xB —ppeoE = poj V xB - poeoE = poj E—#OéO(VxB Hoj)

(8) Ampere’s law — charge conservation: V-(V xB —yoeoE) =—poeoV-E=—pop=poV-j=>p=V-j.
(9) Time independent form. V-E = %, V xE =0 (irrotational), V-B=0, VxB=yj=V-j=0 (incompressible).
e Electric fields satisfy 565 E-dS = %, ggLE -dl=0. V-E= %, V x E = 0 = Electric field lines end on point charges.

e Magnetic fields satisfy 565 B-dS=0, 9€B ~dl=pp) I;. V:-B=0,VxB=pyj = Magnetic field lines never end.
(10) Set B=V x A, E=-V¢ = Automatically satisfy the sourceless equations V-B =0and VxE = 0.
e A’ = A+ Vi gives the same magnetic field. The freedom can be removed by setting V- A = 0 (Coulomb gauge).

e Substituting into the sourced equations: V¢ = —%, V2A = —pj.

(11) Define the potential difference dV = (x +d1) - p(r) = Vp-dl = ~B-dl = AV, 5 = [, dV = - [{ E-dL.
(12) The magnetic flux ¢p = fs B-dS = fs VxA-dS = iA -dL. fﬁLVI,b -dl = 0 = invariant under A’ = A + V.
1.2 E, B fields and potentials

2 4 ) p(r _ _ 1 sp()(r-r’)
(1)V ¢__ :>¢ 471&0 Vdv [r— r| E(r)__v¢_47'l€o Vdv =P
(2) A set of point charges p(r) = Z%é (r-1))= P(r) = 4m0 Z e E()= 477{0 Z q|lr rr T3 )
e For a system with two point charges, E,(r) = 471180 qlzr(rr r|§)’ 12=q1Ex(ry) = % ﬁ = —le.

27 = _ K 7 j(r’) _ K .y
(3)VA——}40]:>A _479zIVdV =4 r’| <) VXA_4701 VdVV(|rr ) _47(1]V |r r’|3
ejdV =Idl = B(r) = & % (Bzot—Savart law).

(4) Define the electric dipole moment p(r IdV r’—r)p(r’), for q; , = g atr; , = +a, p(r) = 2qa.

N ) _ ra 1 .1 . )
* p(r) 47160(|Ir —a| [r+a|) r—aj=Vr*+a®-2r-a= r\/1+ - 2 ~r\/l—%._~_( ):(P )~ 471&0r[1+rr_§l_(1_u

= ¢~ 2 L~ 5(14358) 5 B = g (25 - 22 )= SLS[3( - pli-pl

-’ j-aP  jr+aP
P dcos0
o Example: for a = 4(0,0,1), p = d(0,0,1), £ = (sm@ 0,cos0) = ¢ = Zn‘:;srz
(5) The magnetic dipole moment is defined as m(r (r'—r)xdl A(r) = 22 ™. For a closed loop m = Ia.
8 P 2 471 r P

(6)B=V><A,VxE+B=0=>V><(E+A)=O:>sat1sf1edbychoosng+A——V(j):>E:—A—V¢.

LTI . CAve-
(7) Gauge freedom {A—>A’:A+V\Il : —V¢' =—(A+VV¥)-V(p-V¥)=-A-V¢ =E.
e Fixing the gauge. Lorenz gauge Clzzj) +V-A =0. Coulomb gauge V-A = 0.

o LP+V-A'= C%¢+V-A—(C%‘P—V2\I’) =0= 5W-V>W=15¢+V-A= W can be found to satisfy the Lorenz gauge.

3
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TAVE 244 17 ¢=—P-

(8) In Lorenz gauge,V-E:—V-(V¢+A):—V2¢—V-A %
. VxB—yOEOE = VxVxA+y0£0(V(ﬁ+A) =V(V-A) - V2A + pgeo[(-c2V(V- A) + A] = -V2A + LA = puoj.
e Define 0 = 2 3t2 LoV O¢ = %,DA = Hoj-

1.3 Electromagnetic effects in materials

1.3.1 Polarization and electric susceptibility

(1)I= % = %JE-dl. Define the conductivity o by 0dS = £dl = j = oE.

IR, g = 0 s the relaxation time scale for the movement of the

ep+V-j=p+0V-E= p+%p =0 = p(r,t) = p(r,0)e

conduction electrons to smooth out non-unifomities in the charge density. tz ~ 8 x 107!? s (metal), 8 x 103 s (insulator).

(2) Method of images. Consider a point charge at (0,0,4) above an earthed infinite conducting plane in the x,y—plane.
I 1 ]1__4 1 1 _

:‘¢(f>—m[M‘m]—m[\/xz+yz " Y | Py 0)=0

+(z—a)2  \x2+y -¢-(z—¢-a)2

(3) Consider a parallel place capacitor. Gauss’ law: E, As , AV = E,d, capacitance C = A& ==

e Energy of a parallel plate capacitor U = 7sOI|E| dv = %C(AV) .

(4) Add a material between the plates. Define the relative permittivity of the material to be &, = &/Cyacuum-

e The class of materials are known as dielectrics, which are electrical insulators (low conductivity).

(5) Polarization of a material occurs when the constituents of the substance align in some preferred direction.

(6) Potential energy of the dipole U = —qEd cos 0 = —p - E. If an electric field is applied to a material:

e Intrisic dipoles will align to minimize energy and elminiate torques.

e Atoms and molecules can be polarized, inducing a dipole moment.

(7) Define a macroscopic vector field, the polarization P [Cm~2] as P = np, where n is the density of atoms and p the average
dipole moment. The polarization in general is a function of E. For linear isotropic material P = xgegE.

(8) When the atoms or molecules have an intrinsic dipole moment p;y;, the polarization in an external field Pj;g, = 3]}: ot E.

e The susceptibility xg o +. At room temperature, AUy, = 2pE ~2x1074 eV < %kB T. The largest field in air is ~ 10 Vm™!
The complete ahgnment w111 not take place even at large electric field. However the fact that the amount of atoms is large
means there will be an observable polarization even at relative low values of the electric field.

(9) When a material does not have intrinsic dipoles, the external field will induce dipoles

o If the external field causes an offset d for a distribution of radius Ry, gEey;. = :> qd = 47-(5012 Eoxt.

q
47‘(50112

2
= Pinduced = Ha&gE, where a = 471R3 = P =Pgjign + Pinduced = neo(a + 3kpi'7‘£€() )E

e Consider P = Py(x)i, P, > 0. AQ = —[Py(x + 6x) — P(x)]6vdz ~ ——6x6yéz:> Pbound = ~ 5. In 3D, ppoung = -V - P.
® Qbound = [, PoounddV + [(0dS =0, [, V-PdV = [(P-AdS = [, 0dS = 0p =P-A.
(10) V-B = -0 = L(pound + Prree) = 25 (=V P+ pfrec) = V- (€0E +P) = ppree. Define D = ¢gE +P

linear (14 xg)eoE = The

isotropic

integral form of Guass’ law: fs D -dS = Qfree-

(11) Consider a parallel plate capacitor with a dielectric. opjate = %, JD -dS=D,A=Q,D,=(1+xg)eoE, = E, = m,
P, = (1+X ) ,V=Ed= #‘;OA =>C= V =(1 +)(E)é0 = (1+ xg)Cy. Define the relative permittivity ¢, = 1 + xg

= D = £,£0E. 0yop = P firop = — L Oplate, Obottom =+ aplate U=1lcv2=1204(E,d)? = 1AdD,E, =} [D-EdV.

(12) Consider the boundary between two regions with 6, "and e, ) and with no free charge on the boundary, as d — 0

= 0=[D-dS=-D\"55+D?55 = D, is continuous.

(13) Consider a loop which encompasses a boundary,asd — 0 = 99E dl = —E// sl + E 251 = E// is continuous.

sm91) E2) _ E2(sm92

e Assume the fields in the regions are E(!) = El(cos@ ) cos 6
1 2

). E;/ being continuous = E;sinf; = E;sin6,. D,
. . 1 2
being continuous = D; cos6; = D,cos0, = 1E7_11 cotf = lg—; cotf, = e(, )cot61 = s(,  cot 0,.

1.3.2 Magnetization and magnetic susceptibility

(1) Consider a solenoid. Ampere’s law = Bl = IB -dl =Nlpygl = B=pugNI, Pg = JB -dS =mr?ugNI. € = —a& = Lai,whlch
is the definition of the inductance. If a magnetic material is added, define the relative permeability p, = —— L

vaccum

(2) Define the magnetization M = nm, where m = [ Afi is the average magnetic dipole moment. U = —m - B in external field.
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(3) Define the magnetic susceptibility M = %B for a linear isotropic medium. xpg < 0 corresponds to diamagnetism, equivalent

to induced polarization. xp < 0 corresponds to pammagnetism equivalent to alignment polarization.

(4) Consider an electron orbiting a nucleus. I = ;—;r, m=LLur?= 5L, where L = m,vr = m = —5"-L.

27rr 2m,

e For more than one electrons, myy; = —57- 3 L;. If } L; = 0 then there s no intrinsic dipole moment.
i i

. . 2

e In the absence of an external B field, the electrostatic force F = 45:0# = mea)gr = wg = ﬁ With external B field,
2
Mmew?r = 456 5 +ewrAB = m,w’r =m w0r+eerB = w? fn—“’AB = a)g = (a)— %) = a)g > w=wy+ EAB'
e2r? ne?Z(r?)
oWy~ 2m AB is the Larmor frequency. Miygqyced = eLLarmor = —4—mBAB. For Z electrons, m = — o,
(5) If ):L # 0, there’s an intrinsic dipole moment mmt. The imposition of an external field B will create an alignment
i
M= g ( tism). The overall susceptibilit My ZEKR))

=>M= 3k "B (paramagnetism e overall susceptibility xp = pon| 558 — —;-

(6)Ina magnet, jbound =VxM,j Jsurface = M X1, ] = ]bound + ]free-
(7) The Ampere’s law V x B = p((joound + jfree) = Ho(V X M+ jgree). Define the magnetic intensity vector H = %B -M

= VxH =jfee 9S,H -dl = Iree. In mateirals M= X—BB H= %B. The magnetic energy U = 5 [B-HdV.
e Define the relative permeability p, = 1—— X =B= ;4,;40H
e Consider the solenoid, 9§H -dl=HI=NII = H=NI.

(8) Consider a boundary with no free currents. ggH -dl = 0 = H/, continuous. JB -dA =0 = B, continuous.
(9) In certain magnetic materials, interactions do occur and can lead to the formation of domains, where all magnetic mo-
1 JB

ments have the same alignment = ferromagnetism. For ferromagnets, M = M(B), y, = G OH

(10) Estimation of magnetization of Fe. Number density of magnetic dipoles nV = Nyi; = n = % ~ 8.4x10% m™
nug~8x10° A-m~!, M|~ few x nug, |B| = yg|M| = few T.
(11) Ideal ferromagnets: a substance with constant M (single magnetic domain) = V x M = 0, no bound currents jsurface =

M x . No free currents: VxH=0,V-H=-V. M—pm. Write H=-V¢ = V2 = —p,, = V-M = (r) IdV’verfl
magnetic scalar potential i(r) = V JdV’ o r’l

Mz, < z, r<
e Consider a uniformly magnetlzed sphere whose M = 0B TS, p=1IMy3] 3 “

0, r>a 24 cosO, r>a

For r>a, B=puyH. Forr<a, H=-V¢ = —%Moi, B=puH+M)= %yoMoi.

1.4 Electromagnetic waves

(1) In free sapce, V-E=0, V-B=0, B=-VxE, E=c’VxB.

o £=c2VxB=-c?Vx(VxE)=—c2[V(V-E)- V2E| = LE - V?E = 0. Similarly, LB - V?B = 0.

e A solution to these wave equations monochromatic plane waves. E = Ege'®™ or E = Ejcos(k - r — wt), w = *ck.
e For E = Egkcos(kz— wt), B = ycos(kz wt).

(2) Generally for E = Ege’ i(kr-wt) ,V E=ik-E,VXxE=ikxE=-B=VxE=ikxE=B= @ei(k‘r‘w”.

e E;-B)=k-Ej=k-By=0 (mutually orthogonal). B, = kZ)EO, By = ka—b:" = % EqgxBg= Eﬂ—‘?k =k =Ey xBy.

e E and B are in phase.

(3) The energy density for an EM field u = 2,50|E|2 + 2}4 IB|>. For plane waves u = eOEz[RE iler— “’”9))] .

e For plane waves, (u) = €0E2 Consider the volume covered by a wave in At through surface AA. The average energy
2

density enclosed by this volume AUy = (u)cAtAA = 1 EchtAA The average flux F = QEJA“}{ = 25700’ Zy= ’;—g =377Q.

(4) The rate of change 1i = ¢gE-E + %B ‘B= ”—O(E'VXB —B-VxE)=-V-N, where the Poynting vector N = }%OE x B.
o[NJ=W-m2. U=-V. NdV: -[N-ds.
e For plane wave solutions, N = ZO kcos? (k-1 —wt+6). Npay = (N) = ZZ . In materials N = E x H.

()InthepresenceofcurrentE—c(VxB ;40]):> 1B-Vv?B= ny], 1E VzE——pom.

e In a conductor, j = 0E = - LE+poE=V’E=> damped wave equation. E = EORE[ iler-cwt) ] = —‘;’—22 —ipgow = —k2.

_ Hoow _
Define R = 2/62 = W

= E=Epe? exp[i(,/%z - wt)], where 6 =, /mow is the skin depth, the length scale over which the amplitude of an EM

wave decays inside a conductor.

For most cases R> 1, 2 C < Hoow = k% =ipgow =™ pyow = k = +e!™*\flgow
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(6) Plasma is a state of matter which is partially ionised and electrons move under the influence of the electric field, ignoring

. . . } dj _ e*n 1 e’n 2
much weaker magnetic field. F, = m,f = —¢E. j = —en, i = a—’t =5 E=SE+ ”Om—eeE =V-“E.

2 2 2
o Ansatz = -9 + BT = |2 = ck = & Jw? — wj, where @) = £=. If @ < w, the waves don’t propagate.

ne P EoMe”




Chapter 2: PHYS20101 Introduction to Quantum Mechanics

2.1 Basic elements of quantum mechanics
2.1.1 Wave mechanics and the Schrodinger equation

. . . . . _ _ E _
e A particle with kinetic energy E behaves as a wave with angular frequency w = 2mtv = 27ty =

2 272
B C e . . _p W2k2
e For a non-relativistic particle E = 5. or &5 - = hw.

2 . 212 2 92 . .
(2) %\I’ =-k*W, %\I’ =—-iwVY, r’z—rﬁ\l’ =hoV = —%%T\f = zh%’ (TDSE in free space).

o If the particle experiences a potential V(x, 1), % + V(x,t) = E = TDSE: [—f—fn + Vi(x, t)]\I/(x, t) = ih%\lf(x, t).
o TDSE in 3D: (-2 V2 4+ V(r,1)) W(r,1) = ih S W(x, 1)

2m
(3) Interpretation: The TDSE is motivated by plane waves. The general solution for W has a wave structure, but does not
consist of plane waves in general. We call it the wavefunciton, which fully describes the behaviour of the particle.
e While W is not directly observable, it contains all the information needed to make a prediction for any physical observable.
e Born interpretation: |W(x,t)|’ is a probability density. |¥|>dx is the probability that the particle described by W is between
x and x +dx at time ¢.
e Like any wave, we expect interference = probabilities are not additive, the phase of W matters.
(4) Properties of the wavefunction.
e Normalization: fspace |W(r,t)> dV = 1. W is single-valued, finite everywhere, continuous and smooth. W is fragile.

P(x) 2m dx? T(t) dt 2m dx2
e In most cases, the form of V(x) and/or the b.c.s imply that it has a set of discrete solutions {t;(x)} with E;.
. ih%—f = ET(t) = T(t) = Ae "E¥/" = General solution of TDSE W(x, t) = ZAil,bi(x)e‘iEit/h.
1

(5) W(x, 1) = p(x)T(t) = - (—ﬁdz—”” + V(x)t/)(x)) = 14T, eigenfunction (-2 4% + V(x))i(x) = Ep(x) (TISE).

e If only one A, # 0, |‘I/(x,t)|2 = ’A,,1,bn(x)e‘”5""‘/h|2 = |An|2|z,bn(x)|2. The probability does not chagne with time = The eigen-
functions of the TISE 1;(x) are called the stationary states.
0, x€[0a] 5

(6) Infinite square wall V(x) = =5 )”(x) = Epp(x) = (x) = Asinkx + Bcoskx, with k? = 2mE

oo, x¢][0,a] " h

2
e Boundary conditions (0) =0 = B =0,1(a) =0 = k = 2% = ¢)(x) =Asin(%), E, = ﬁ(”aﬂ) ,n>1.
2 2

e Zero-point-enery: n =1, E = ﬁ(%h) . Uncertainty principle: Ax ~a, Ap ~ %, E~ ﬁ(%) .
(7) Misc: (i) Particles are described by wavefunctions, they exhibit interference, diffraction, etc. (ii) The wavefunctions are
solutions of the TDSE, which can be built from solutions to the TISE, each with time dependence given by an oscillating
exponential.

2.1.2 Operators, Commutators and Compatibility

(1) Hamiltonian operator: H = —;’—:n aa—;z + V(x). Eigenfunctions HlPi(x) = E;1;(x) are the stationary states.

(2) The expectation value of a stationary state (E) = E,, Lo:o W, (x, t)"\W,(x, t)dx = f:o W, (x,t)* HW,(x, t)dx.

(3) Consider the linear combination of two stationary states W(x, t) = A; iy (x)e E1¥/" 4 A, 1p, (x)e E2t/N

= (E) = [* W(x,t)"HW(x, t)dx = E1 |A1|* + E>A|* and <E2> = [ W(x, t) H(HW(x,t)dx = EZ|A]* + E2 |Ao .

e Whatever energy was measured the first time, the same energy is measured the second time.

(4) Measurements: Al,bn =a,P,, (A)= Jl,b*Al,bdx.

o If the system is in state 1, the measurement of A will always give the value a,

o If the system is in a mixed state ¢, the measurement of A gives one of the values {a,} with expectation value (A)

e After measuring a,, the system is left in state 1,,.

(5) Hermitian conjugate of A : f@*A+de = f(/i@)*‘l’dx. Hermitian operator: A" = A.

e All eigenvalues of a Hermitian operator are real. Hermitian operators correspond naturally to physical observables.

e Eigenfunctions of a Hermitian operator with different eigenvalues are orthogonal.

(6) commutator of A and B: [A, B] = AB - BA.

o If [A,B] =0 = ABW = BAW for any W = A and B can be measured in either order and give the same answer (compatible).
e If [A,B] # 0, A and B are incompatible. Measurements of one affect the other. It is not possible to know both simultaneously
and they do not share eigenfunctions.

(7) [%,p4] = ih
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(8) Uncertainty of the measurement (AA)? = <A2> —(A)?. Generalised uncertainty principle (AA)(AB) > '% <[A,1§]>'

2.2 Quantum harmonic oscillators and angular momentum
2.2.1 Quantum harmonic oscillators

(1) Hamiltonian for 1D QHO H = £ + Lmw?%2. The TISE is ——d—w + 5 ma) 2x?1p = Ey. Boundary conditions: 1(+oc0) = 0.
2m 2 2m dx2 y

(2) Solutions of 1D QHO: ¢, (x) = AH, (%)e’xz/za ,a= E, = ( E)h(u.

e The lowest solution is a Gaussian with no nodes. The nth excited level has n nodes. For even/odd n, the solutions are
even/odd functions.

e The fact that the zero-point energy is non-zero corresponds to the statement that a particle in a potential can never be at
rest, since its x position is confined near the bottom of the potential, its momentum values are spread out.

(3) Diatomic molecules. As atoms become closer their electron clouds induce dipoles in each other, giving rise to an attractive
force. When they are very close together, their electron clouds start to overlap and they repel each other.

mw’

e Around equilibrium position, V(r) =~ V(rg) + (r — ro)%‘r/ rery t %(r —19)? %rv r=ro =-Vo+ %kxz.

e In the center-of-mass frame E = J Tkx? + p . Expect photons to be absorbed or emitted by molecules at w = %

e Example: CO. Observed frequency of EM radlatlon from transitions between adjacent vibrational levels in CO is 6.43x10'3
Hz. p= "2 = 6.86 amu = 1.14x 1020 kg. w = 2mv = 4.04x 10'* ~ 0.266 eV (infrared). k = pw? = 1860 Nm™!

1+1m;
(4) Hamiltonian for 2D QHO: H = H, +Hy, H, = ;’m gxzz + 1mwzxz, Hy = ;fn gyz + 1mw y

9% %h(x,
(5) TISE for 2D QHO: 2m( g’iz Yy :’5—;’2‘?))+ FMw 2(x? +v )¢(x,y) = Ey(x,y). Eigenvalues Enx,ny = (ny+ny + 1)how.

(6) Superposition: Pyo(x,v) and g1 (x,v) have the same energy 2fiw, any linear comb. at;g + bipg; has the same energy.

2.2.2 Angular momentum

1) In classical mechanics, motion in a central potential conserves angular momentum. 9 =rxF =0, L = x p = const.
P & dr P
() L=txp. L, =2p,-9p, = (- zh)( ——yax) ~ihg.
. ) IR i1 oyn PP+2m)=0(9)
uppose r . Eigenfunctions of L,: L, =L, = et 5[ =mh meZ.
3) Suppose §(r, ) = R(r)P(¢). Eigenfunct fL.: LO(p) = L,O(p)= O(¢p) = e'l=? L h z

(3)

(4) Consider gy = Ae™ r’/2a® and 19 = Arcos cj)e_’z/z”’2 g is a trivial eigenfunction of L,, but 110, Po1 are not.
(5) Consider ¢ = atpg; + bibg, P10 + it is an eigenfunction of [, with eigenvalue L, = +H.
(6)
(

2
6) H = (gr2+%%+r1—2a9¢2)+ mw?r?, L, = -ih2 :»[LZ,H]

7) Deﬁne n=ny+n, and m are good quantum numbers for the 2D QHO. They can be known simultaneously and they fully
specify the state of the system. An (n,m) pair uniquely describes a state of definite energy E = (n+ 1)hw, L, = mh.

8) [L,, ﬁy] =ihl,, [L?1,]=0. We can know |L| and L, simultaneously, but not L.

(9) The total angular momentum operator J —hz(aa—;z + cotG% + ﬁ 9‘9—(;2)

(10) The TISE for a particle in a central potential. (—h—z + V(r))rp =E.
2 _ 20 d 1 0? -1’ (0 -
oV 2+r9r+r2[392+C0t9 sin? QW]:W(ﬁ rar)¢+2mr21’b+v( )¢_5¢'

<11) (%vzwm)w Ep = (L + 22 p+5L g vy =Ep

r, = onsider the eigenfunction e uatlonI: =L and let Y be the eigenfunction o I: .

(12 0, Qthgf quation [21 = L2 and let Y be the eigenf f12
= hz( ‘92 +cot9 26 84)2) (0,¢) =L*Y(0,¢). Let Y to be an eigenfunction of L, as well = Y(6, ) :P(G)eim¢.
— hz( s +cot0-% mje)P(e):BP( ). Define L2 = A\h? = dez Lt dl o ( )P 0. = Y(0,$) = P"(6)e™?.

e Eigenvalues L% = /\hz I(I+1)h? and L, = mh, |m| < 1. | and m are good quantum numbers.

2.2.3 Rotational motion of diatomic molecules
(1) Consider two atoms separated by a distance ry and are free to rotate around their center of mass.

2 2 2 2
— my my — _miny _ 17, 2_L 172 _h
o [=my(5=r0) +ma(mbsro) = mierd = L=lw, E= 30’ =4 = H= 412 = E = 5l(1+1).

(2) For an H, molecule, p =42 =0.84x1072" kg, rp = 0.74 A = g; =7.5x1073 V.
e E~ kT = T ~ 90K = rotational excited states are populated at room temperature unhke vibrational states.

e E ~ photon wavelength A ~ 0.16 mm (far infrared towards microwaves). v = /\ % h_ =52 dl(l +1)=BI(l+1).
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2.3 One electron atoms

2.3.1 The Hydrogen atom

(1) A H atom consists of a single electron in a bound state around a single proton, held together by the Coulomb force.
2 .29 L2 2 -

(2) TDSE: [M 2 +7E)+W-4;EO,]¢ (r,0,$) = Ep(r,0, ).

o V(r)= is negative corresponds to this being an attractive force and we expect to find bound states.

4115 r
2 0+1)H2 2 . U
(3) ¥(r, 0, ) = R(r) Yy (6, p) = (—?—m,%%ﬂ% . (;nr)z _ 4;€0r)R(r)ng(9,¢) = ER(r)Y;,(6, §). Write R(r) = 22,
12 d2U . C(e+1)h? m,e 471 72
e o S U _U=EU. Defmep L E=f with Eg = 575 = 13.6 eV, ap = <=5 = 0.53 A.
For large p, -5-5 = EU Define E = -b2 = Up) = et Since hm U(p) =0,U(p)— ebe,

Y+ lu-2u=EU

For small _W + l(lp+1)

:U(p):p”l b0 £ (p) with E = —b2. Substitution = p df +2(0+1-bp) L +201-b(C+ 1))f =0.

0.U(0)=0=try U(p) ~p* = U(p) p

elet f(p)= Y cxpf = Zk(k+1)ck+1p +2(l+1)Z(k+1)Ck+1p -2b Z(k+1 1P+ 2[1=b(I+1)] ¥ erpF =0
k 0 k=0 k=0
= 2(I+1)(k+ 1) +2[b k+l+ 1)=1]cg =0, [k( k+ D+2(k+1)(I+1) ]ck+1 =2[b(k+1+1)—1]ck. The series doesn’t converge.
=0 b= L F- . E= l+1 described by p = Oth order polynomial and / = 0,1, 2,-
P Frp+l (Hp+1) E=- l+2 described by p = 1th order polynomial and [ =0,1,2,---, etc.

e Define a quantum number # such that E,, = 52 ,n>1land 0 </ <n-1withap=(n-1-I)th order polynomial.

U () n 1=0 I=1 I=2
¥
P(r,0,) = Ruy(n) Yy, ) = =2 Y1,0(0, ) | e/
1 r\p-r/2a T pr/2a
2 (1- 0 0
r ) —r/mlof ( ) ( ag) ao
ocC| — nl Ylm(e (P) 2
(ao 3 (- e E(1- g ) () e

e Normalization: fo drf0 d6 d(j)r s1n9|1,b| _Io drr?|R(r) | xf desmE)fO d({)|Y1m|2 Jo drr?|R(r )| =1.

(4) Transitions between energy levels hv = ER( i nlz ), n’ <n.

2
(5) For ions with the same structure with Hydrogen (H$,Li**) V(r) = —%, E, = —anR.
e Classically, E,, = anR , where p = ﬁd For positronium, y = ’
2.3.2 Electron spin
(1) Magnetic moment pp=1A, A = Jon % r’do = JOT % 2d6dt = OT %%dt T L I=—f=p= 2518L.
(2) QM: ji, = 2m L, with eigenvalues ——hml myug, where yg = zifl’g.

(3) Stern-Gerlach: The magnetic moments measured did not fit the pattern predicted by y, = —’%BLZ. In particular, it was
found that even electrons in s orbitals (I = 0) have a magnetic moment = electrons have intrinsic angular momentum.

(4) All electrons have a spin quantum number s = %, with $? =s(s+ 1)k?, S, = mh, my = —s,---, 5. Uy = —gshpMs.

(5) Define spin wavefunction x. to be the eigenfunctions of S,, §in = J_r%xi.

e The Hydrogen wavefunction W, ; . 1. = U 1,m; Xm,- (1,1, m1,my) is the complete set of good quantum numbers.

(6) In quantum mechanics, we cannot know all the components of L; or L, simultaneously, so we cannot simply add
J =L, +L,. Angular momentum addition theorem: states with I; and I, combine to give a set of states with j =11 +1,,---,|I[; = ;|

2.3.3 First order perturbation theory
(1) Suppose the Hamiltonian of a system A=Hy+V and I:Iogbn =E,,, where {¢,,} are eigenfunctions. V is small.

(2) SuppOSe (I)n = 771}11 + Z, [,li,n)gbn‘ (HO + V)\Pn = (En +AEn)\IIn = (I:IO + V),Pn + Z ai.n) (H() + V)llbl — (En +AEn)(17bn + Z ain)l’bl)

i#n i#n i
5 () (n) orthogonality L s

= Eyu+ Vipu+ L a; Eithi = By + AEyy + Ey ¥ 4] )y =——== AE, = [}V, dx.

i#n i#n
A A 2 2
(3) Consider H = HQHO + ax4, 1/)n(x) = Aan(g)e—xzﬁaz = AE = AZJ[H E ] ax4e_xz/“2dx. Forn=0, AEO = %a(%) .

h k

4 4 2 k
i ,aa* < kat = a < .

2
e Condition to use P.T.: a( ) <hw=a< 5k= K . Classically if V(x) = Tkx? +ax
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(4) Consider H = HQHO + Bx. In first order P.T., none of the energy levels are shifted.

2.3.4 Spin-orbit interaction
2

(1) H=Hy+Vso,=Hy+ f(r)L-S, f(r) 2m1621‘§1‘r’ r————

e Estimate L-§ ~ 7%, r ~ay = (V5.0.) ~ 1073 eV, which is much smaller than the spacing between H levels (few eV).
o [LoH20. 202 =0. =L +8 =2 = 12420 +82 > 1§ = }(j2-12-§?)

= If we are in definite states of J2,12,52 = (L-8) = J(j(j+ 1) (I + 1) = s(s + 1))h2.

e On this basis, (1,1, ], m]-) are good quantum numbers.

(2) Consider the 2s and 2p states with [ =0 or [ = 1(m; = —1,0,1). The 4 x 2 states are all degenerate with E, = —%R.

e Forl=0 <IZ-S>:0:>AE:0
Forl=1,j= =2 Withj=3,(L-8§)=1n% Withj=1,(L-§)=-#h%
e For j=3o0rj 1]2< >2 1]2<2> +1
PO 2 i(j+1)=1(1
o AE=(f(NL-8)= —C— (IV(j(j+1) = 1(1+1) = s(s + 1))h? = iy p LMD AR, =151 %1075 eV x40

8meqgm? Mec 1(I1+%)(1+1)
-2

2.3.5 The strong and weak Zeeman effect

(1) If the magnetic field is strong enough, the spin-orbit interaction is a small correction to the magnetic energy. We can
therefore calculate the magnetic energy as a perturbation of the unperturbed hydrogen orbitals.

(2) If the magnetic field is weak enough, the magnetic energy is a small correction to the spin-orbit interaction.

= Strong Zeeman <Vmag> = pgB(m; + 2m;). Weak Zeeman <Vmag> = ,uBB(<A > <§Z>)/h = yBB(<fz> + <§Z>)/h.

q JU+D)+s(s+1)=6(0+1) 5 _ j(j+1)+s(s+1)=1(1+1)
° (SZ> 255G+ mjh. = <Vmag> grpupBm;, where gg =1+ B T FS

2.3.6 Miscellaneous

(1) Define the parity operator Pi)(r) = p(-r). [H, P] = 0, parity is conserved, its eigenvalues are good quantum numbers.

e For Hydrogen, {(r) = R(7)Y;,,(6, $), (1) = R(r)Y;,y(t =6, + 1) = (—1)1R(r)Ylm(9,cj)) = Il is even/odd = i (r) is even/odd.

(2) Radiative transitions. If a hydrogen atom is in an EM field, the separation of the negatively-charged electron from
the positively-charged nucleus corresponds to an electric dipole. Define an operator d = —ef as a measurement of this
dipole moment. We can think of the interaction of a photon with the atom as a measurement of this dipole moment. The
measurement can change the wavefunction and flip it into another state.

e The transition rate Jd3r1,bf )dt,bl efd3rv,bf )#1;(r). The result is non-zero only if the transition is between an odd
and an even function. Actual transitions can only take place between states that differ only by Al = 1.

e There is no single-photon transition from 2s to 1s. The 2s state is stable.

2.4 Multi-electron atoms

2.4.1 Multi-particle wavefunctions

(1) Fundamental particles are all identical or indistinguishable. Consider a two-electron system, 1!)(1'1,1‘2)|2 = |gbr2,r1 |2.
(2) Define the spin-parity operator lsl,b({rl,sl}, {ry,52}) = w({ry, s2},{r1,51})- P has eigenvalues +1: ¢(1,2) = x(2,1).
e Particles that have ¢(1,2) = +1(2,1) are called bosons (y, He). Particles that have ¢(1,2) = —1(2,1) are called fermions.

(3) Consider a system with single-particle wavefunctions 1, (r) and ¢4(r), where a # f are sets of quantum numbers fully

describing the state.
8 POy, 1y) = [ll’a 1) Pp(r2) + Pa(r2)pp(r)]
PpA(ry,17) = [lPa r1)Pp(r2) = Pa(ra)Pp(r; ]
o If a = B, then PS)(ry,1;) = o (r1)p(r2) is allowed, but P (ry,1,) = 0.
(3) Pauli Exclusion Principle: Identical fermions are not allowed to be in the same state.

(4) The Quasi-Independent Particle Approximation: Each electron’s wavefunction is independent, apart from the antisym-
metrization due to the fact that electrons are identical fermions.

e Two-particle wavefunction

2.4.2 The Helium Atom

. . . N 52 h2 2 2 2 A N A
(1) The Hamiltonian for He/Li*/Be?*: H = % + 21353 - 455()“ - 45:00 + 47T:0r12 =H; +Hy + V(r).
A A 2
o S)(ry,15) and PW(ry,1,) are eigenfunctions of Hy + H, with eigenvalues E, + Eg, Eq 5 = —ZHER.
(2) The wavefunction W(ry,s1;¥5,5,) = P(r1,12)x(s1,52). Consider the x part.
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§=0=Ms=0=x" =50 ()x-(2) - x-()x:(2)

S
) = (xe(2)

S
S=1=Ms=-1,0+1=1x¢ = 5 (6, (x-(2)+ 1 (Dx.(2)
S
x5 = x-(x-(2)
(3) For S = 0. x is antisymmetric, so 1 must be symmetric = ground state lp(liis(rl,rz) = P15(r1)P15(r). Its energy

e The total spin of the two electrons

fd%d%ri—2|¢15<r1)|2|¢15(r2)|2 (2.1)

2
E= jd%df'rz(lms(rl>¢L(rz>>(1—71 # B+ V) rs(r1)Ps(e2)) = 215+

=-27%Eg + ZZER =—74.8eV. (2.2)

e The last integral is the energy shift due to the classical Coulomb repulsion between two electrons.

e The double-ionization energy of helium is 79.0 eV (1st order P.T. is accurate).

e For Z =1, the H™ ion, E = —10.2 eV. This is higher than the ground state energy of the H atom = The ion cannot exist.
However, 2nd-order P.T. gives E = —14.4 eV and the H™ does exist.

(4) For S =1, x is symmetric = 1 is antisymmetric. Electrons can’t both be in the 1s state. The ground state is 152s.

E= % Jd3f1d372(1;bis(f1)¢§s(f2) — 5 (1)} (1)) (Hy + Ho + V ) (15(r1 )25 (12) = o5 (11)15(r2)) = Eys + Eng + Ec — Eex

e Ec= 4210 fd3r1d3r2%|1p15(r1)|2 hys(12) ? is the classical Coulomb repulsion.
oF. = 4761250 Jd3r1d3r2%#}Is(rl)gl;;s(rz)gb;s(rl )(r2) lowers the energy of the ground state. Due to the exclusion principle,

the electrons are pushed furthur apart than they would be and results in a lower electrostatic repulsion.
(5) Consider the first excited state of the parahelium (S = 0) 1,[)535(1‘1,1'2) = %(1,{)15(1'1 Jihos(r2) + Pog(r1)h15(12)).

e E = Eis+Ey; + Ec + Ey. The parahelium’s first excited state is higher than orthohelium’s ground state, because electrons
spend more time near each other in the symmetric state and thus the Coulomb repulsion is stronger.

2.4.3 The Periodic table
(1) Consider the Li atom. The 1s orbital has (r) ~ ag/3 and the n = 2 orbitals have (r) ~ 4a,. The shell model assumes there is
almost no overlap between two levels. The n = 2 electron sees a total charge (Z —2)e = 1e (an approx. of H atom).
e The Hydrogen wavefunctions ¢ ~ r' for small r. In the 2s orbital, the electron spends a higher fraction of its time inside
the shell of the 1s electrons. Thus the energy of the 2s state is slightly lowered = the 3rd electron occupies the 2s orbital.
(2) For atomic number Z = 3-10. Li = (He)(1s), Be = (He)(1s)?, B = (He)(1s)?(2p), ---, Ne = (He)(1s)?(2p)®.
(3) X |Ylm(9,<j))|2 = ﬁ for all I = A full orbital is spherically symmetric.

m

e For Na, the two n = 1 electrons are at (r) ~ ayp/11 ~ 0.1ay, the eight n = 2 electrons are at (r) ~ 4# ~ 0.4a, the n = 3 orbitals
have (r) ~ 9a,.

(3) For atomic number Z = 11-18. Na = (Ne)(3s), Mg = (Ne)(3s)?, Al = (Ne)(3s)>(3p), ---, Ar = (Ne)(3s)*(3p)°.

(4) As nincreases, the energy levels of hydrogen get closer and the advantage of low [ orbitals penetrating inner shells remains
and eventually wins. For atomic number Z = 19-30. K = (Ar)(4s), Ca = (Ar)(4s)?, Sc = (Ar)(4s)%(3d), Ti = (Ar)(4s)%(3d)?,
V = (Ar)(4s)%(3d)3, Cr = (Ar)(4s)(3d)>, Mn = (Ar)(4s)?(3d)>, Fe = (Ar)(4s)?(3d)®, Co = (Ar)(4s)?(3d)”, Ni = (Ar)(4s)*(3d)%,
Cu = (Ar)(45)(3d)'°, Zn = (Ar)(4s)*(3d)'°.

(5) A negative exchange energy will give the lowest possible total energy = The lowest energy state has to have an antisym-
metric spatial wavefunction = The spin wavefunction must be symmetric.

= Hund’s rule 1: The ground state has the highest possible S value.

e Carbon (2p)2: ¢¢_ ¢_¢ _¢¢ — M; =+1,0,—-1. Carbonhas S=1,L=1.

e Nitrogen (2p)*: _¢_$$ = M = 0. Nitrogen has S =3, L =0.

e Similarly, Oxygen has S =1, L = 1. Fluorine has S = %, L=1.NeonhasS=0, L=0.

(6) Electrons with similar momenta spend less time near each other (eg: m; = 2,1 spend less time than m; = 2,-1).

= Hund’s rule 2: The ground state has the highest possible L value.

o Ti (Ar)(4s)?(3d)* has S=1and L = 3.

(7) The spin-orbit interaction for a single electron o« j(j + 1) —I(l + 1) —s(s + 1) = The energy is minimized by taking the
smallest possible j, | —s| = Hund’s rule 3a: If the orbital is less than half full, the ground state has the lowest possible |
value, |[L-S|.

(8) Hund’s rule 3b: If the orbital is more than half full, the ground state has the highest possible ] value, L +S.
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3.1 Complex numbers and complex variables
2=x?+p? = (x+iy)(x—iy) = zZ.
e Modulus of z: r = |z|. Argument of z: 0 = arctan(%) =argz. O = Argz € (-, 7t] is the principle value of argz.

(I)z=x+iy=rcosO +isinf = re'?, where r

(2) Region: A connected open set. eg: |z| < 1.
3) f(z) defines for each z = x + iy in its domain, a new complex number w = f(z) = u(x, ) + iv(x,p).

Y = ¥V = e¥cosy +ie¥siny. sinz = %(e —e ), cosz = %(e’z + e"z).

(
(4) Functions based on exponentials: e* = ¢
(5) Inverse functions and multi-valued functions. If w = f(z), then z = f~}(w).

o f(2) ( 19) [ ei(9+2nk)]% _ \/;eigeink =(-1 k\/;ei%'

1 : 1 1 -0 27
o f(z)=2". fl(z) =27 = [ ‘(6+2"k)]” — rieinel i = 1 values functions.

o f(z)=¢* fl(z)=Inz= ln[re i(0+2mk) ] =Inr+i(0 + 27k), k € Z = Infinitely many values function. Functions defined by
different values of k are different branches of Inz. The principle value Lnz =Inr+i6 =Inr +iArgz, 6 € (-7, ).

. . . _ _1 _ . _ . _ 1 _ u . v
(6) Functions of mapping. Consider w = f(z) = ;. z=x+iy, w=u+iv=oz= 7 = 5 —i—.

2 2
1 2 _
e For x =const, z—x—constz«(u—ﬂ) +v (2x),

(7) A function f is continuous if a continuous path in the the z—plane maps to a continuous path in the plane of w = f(z)
e Polynomials are continuous.

e f(z)= g = i;g is not continuous at z = 0. y:loi,gl—»o =1, leoi;n_)o =-1.
(8) Argument theorem (for continuous single-valued functions): Consider w = f(z), f(z;) = f(2;) =--- = 0 and C is a path in

the z plane. If n zeros are enclosed by C, then Aargw = Aarg f(z) = 2nn.

9) Differentiation. Define d—f = ohmo = w If df exist (independent of how 6z — 0) at z and in a small neighbourhood
Z—>

of z, f(z) is an analytic function of z. f(z) = f(x+iy) = u(x,v) +iv(x,y), df = du+idv = (az dx + a—;dy)+ 1(3—2 dx + a—;’dy).

2 ;0
Gedxtigidx gy Lo du _ v
df dx ~ ox dx N 9x — Iy

dz=dx+idy = g = %dyﬂ'g—;dy o % _ _g_v (Cauchy-Riemann equations).
idy T oy dy y x
o If f exists, 3 df = gﬁ =1 g’; If f is analytic, then f and all higher derivatives exist.

o f(z)=2"{neZ n<0. <z"isanalyticexceptatz=0. |Butdoesn’texistthroughouta small neightborhood

neZ n>0. z"isanalytic for any finite n. For ne€ R, n¢ Z. The derivative may exist at z=0
of z=0as a result of z =0 is a branch point.

nelR, n¢Z. z"isanalytic exceptatz=0.

o f(z) =e* =e*cosy +ie*siny is differentiable and analytic throughout the complex plane.

(10) If f(z) = u +iv is analytic, then V?u = ‘3—‘; + ay

e f(z) = u +iv is analytic, v(x,v) = 4x3p — 4xp> = u(x, ) = x* = 6x%p? +y4 +C, f(z)=2z*+C.
e Analytic functions of z can be written as a function of z alone. eg: f(z) = |z|* = 2z is not analytic.

24 —0,V?v =0. u and v are called conjugate functions.

(11) Vu = (g—” g—;) Vv = (‘9” g” ) = For analytic functions, Vu - Vv = 0. For an analytic mapping w = f(z), the contours of
X,V =const intersect at right angles. In general, an analytic function f preserves angles if f #0.

Proof: Let f(z) be analytic at zy, wy = f(2q), wo + Aw = f (29 + Az), Az = e’ = Aw = f(zg + Az) - f(z9) = Az% ’20'
Write i—]zf |Z0 = me'?, then Aw ~ (eeie)(mei ) = eme'(9+9)_ So locally f scales Az by m and rotates by a.

(12) A sourceless electric field E=-VU, V-E=0= V?U = 0. U is determined uniquely by the b.c.s

e Consider a pair of infinite conducting plates. u(x,0) =0, u(x,L) = Vg, u(x,v) = %y. Define a complex potential w = u +iv.
choose v = ——x to make w analytic > w = —%z

(13) General strategy of using conformal mapping to solve the potential: (i) Define the problem in the x,y plane. (ii) Find a
mapping that takes unknown equipotentials to a simpler geometry in the plane Z = X(x,y)+iY(x, y). (iii) Solve by inspection

in the XY plane. (iv) u(x,p) +iv(x,y) = P(X,Y) +iW¥(x,p).

12
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Y Y
(1) ’ (2) ¥
Ye ° T /2
E/ B/ (y
= ° =
B A(L,0) c |A D InR
—e——'—o—eo—o— X —_——e——o—— X X X
E C D
e Consider two conducting semi-plane separated by two small insulators.
Transformation: Z = Lnz = In|z| + iArgz. Solution in the XY plane: ® +iW = IVO Z = ZVOL z=-Y —2[In|z| +iArgz].

::®+ﬂyz—%qmwmz+ﬁlnammn@)::u@y)—%ammn()vWJO— th@ +y)
e Heat flow: % = DV?2y, in the steady state Viu =0. u(x,0) =0, u(0,y) = Tp. The quarter-circle is insulated.
Transformation: Z = Lnz = In|z| + iArgz = Heat flows along circular arcs.

Y Y Y
(4) Ve

N G

e Conducting cylinder in uniform electric field, E = —-Ey. u = 0 at |z| = a. Expect u = Ey + Eyg(r), lim g(r) = 0, g(a) = —1.
r—00

Inspection: u = Ey — Eyﬁ = Im(z+ é) = Rz[—iE(z+ é)] Transformation: Z =z + é =X +1Y. Solution ® = —eY.

‘ X =(r+%)cos6 = a(r)cos 0 2 2
Forz:re’e,Z:(r+¢)c056+i(r—§)sin9:> ( ’2) ) (). :>(X) +(X) = 1.
Y:(r—%)sm@:ﬁ(r)sm@ P
Asr—a, p— 0, a - 2a. A conducting strip of width 4a doesn’t affect the uniform field in the Z plane.

e End of parallel plate capacitor. Consider z = f~1(Z) = Z + 7% for X € (—o0,0), Y € [-7, 7].

a

, =X+eXcosY =0
Xy o ) eXc.os .Y =0 maps to y <
y=Y+etsinY x=X+e

DX, Y)+iV(X,Y)= —z—Z Equipotentials Y = b = x = X +eX cosb, y = b+ eXsinb.

y=Y

z=x+iy=X+1iY +e
v x=X-eX

, Y = 7 maps to

3.2 Complex integration

(1) Define points zy =a, zy = b to be end points of a path C, define t; to be a point on C between z;_; and zx. f(z) = u +iv.

N N
Let Sy = Y f(te)(zx —2k21) }:f tx)Azi. Define JC z)dz = hm SN- 2k =X +ivr = Sy = 2 (ug +ivg)(Axg + iAyy)
k=1 k=1
N
= Sy = ) (upAxg + v Axy + iug Ay, — v Ayg) = hm SN = IC dz_fudx Jvdy+zfvdx+zfudy
k=1
o If we wrlte dr = (dx, dy), fc dz_f(u+1v)dx+z(u+zv dy = f )-dr.

Jo z2dzalong v = x. f(z) = 2> = x> —p% + 2ixy, dz = dx +idx. fcz dz—J0 (i2x? (1+1)dx—%( 1+1).

fﬁc dz, C is a circle centered at the origin. z = Re'?, dz = Rie'?d6O = izdo. 99 dz = 2n 1 1zd6 27,
(4) @C Cauchy’s theorem: If f(z)is analytic in a region S, then gﬁcf(z)dz =0.
Proof: From Stoke’s theorem QSA- dr = J(V x A)- dS. In terms of dr = (dx, dy,0), dS = (0,0, dxdy)

of

%) drdy. $(2)dz = (f dx-+ if dy) = §(£,if) - (dx, dy) H(x——)dxdy 0.

:fs(VxA)-dS:H(%—
G

L @ Corollary: If f(z) is analytic in S, then 56c17 c, = JC] _ICZ =0= JCl = JC; = Lb is independent of path.
6))
e Converse of Cauchy s theorem: If (ﬁc z)dz = 0 for all closed path in a region D, then f(z) is analytic in D.
(5) Define F(z J f(s)ds for paths in reglon of analyticity of f.
e F(z+ dz)-F(z) = IHAZ )ds —J f(s) JZ+AZf( )ds ~ f(z)Az (continuity) = f(z) = lim Hlatda)F(m) _ ‘j—i This also

shows that F(z) is analytic: it derivative exits.
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e Definite integral: fzzf (z)dz = Jzzf )dz - j f(z)dz = F(z,) - F(z1). Indefinite integral F(z) = [ f(z)
° fz” = nn++11 C, f dz =Inz+ C (the path doesn’t enclose z = 0).

(6) Path deformation: If f is analytic between C and Cy, then 9Sc z)dz = fﬁc z)dz. Proof: consider the path

o If there are several regions of non-analyticity, we can deform the path to several loop containing the
regions of non-analyticity: g(jc = 95C1 +9€C2 e C

(7) Cauchy’s integral formula. Let f(z) be analytic on and within a closed path C and a be a point enclosed by C. Then

— L M "(q) = L f(2) (n)(,\ — ”_' f(a)
fo= 5 Loaz fi- m.jic L0 )= 2711.9% P e

: : ; - i0 — ipei® f@) 2 flatpe'®) . 0 4p _
Proof: Take C to be circle of radius p centered on a, so z=a+pe'’” = dz=ipe’” d0 = g(jc = dz= el ipe’” do =
, _ 1l a+Aa) flat+Aa)—f(a) 1 1
i [ fla+ pet® 2" f(a)dO = 2mif(a). f'(a)= 11m0 -2 _Aliqu—z—[gﬁczMad ~ ¢ L2 dz] =
— f(z) _ 1
Algmoﬂ2m éc[z a—Aa~ z- a]f )dz = hm 0 21 9SC (z—a—Aa)(z—a) Z_Sﬁ
(8) Estimation lemma: If |f (z)] < M on C, then || f (z)dz| < ML, where L is the length of C.
Proof: Sy = Z f(tr)Az| < Z If ()| Azy] < Z M|Azk|—> UC dz| <ML.
(9) Liouville’s theorem: If an analytic function is bounded, |f(z)| < M for all z, then f is constant.
Proof: f'(a 27“95(: Z) >dz, Cisacircleof Ratz=a. |f’(a 2171 leR2 |dz|$%% nR:%—Rioi)O.
e Any function f(z) that is not constant becomes arbitrary big somewhere in C.
(10) Fundamental theorem of algebra. P,(z) = co+c12+---+ c,2" has n roots in C.
iouvill
If P,(z) has no roots, then 3 ( ] is analytic in C and has some max value Liouville, #Z) = const = contradiction.

T t.
= P,(z) must have at least one root z; = P,(z) = (z—z1)P,_1(2) gi:‘» P,(z)=(z—2z1)(z—2) - (z2—2,Py(2).

(11) If analytic function f(z) vanishes as (z —zy)", n € Z, we say f has a zero of order n and we can write f(z) = (z—z2()"g(2),
where g(z) is analytic and g(zg) = 0. If f is non-analytic at z,, but h(z) = (z —z()P f (z) is analytic and non-zero at z = z;, then
f has a pole of order p at z = z;. A function that is analytic except at isolated poles is meromorphic.

(12) The argqument theorem f(z) is meromorphic within a closed contour C and analytic and non-zero on C, then 95C C[,((ZZ))
27i(N — P), where N, P is the sum of orders of zeros/poles of f within C.

Proof: Consider a pole of order p at zy. f(z) = (z—zy)Pg(z), with g(z) being analytic and non-zero at z;.
= f'(2) = —p(z—2z0)P"'g(2) + (z— 29) P¢’(z ) = % = —Z_LZO + ?g((zz) Con51der a loop C, with radius p centered at z,

g, = 1 8@ 4, S Gimi -
99C0 T dz=-p 9Sc0 s dz+ 9€Co e dz = —2mip. Similarly for zeors, gﬁcl T "dz = +2min.

’ 4 . d .
. fT = %(lnf)295’}((5))dz:(1n|f|+zargf)|§2gin =0+iA(argf).

3.3 Taylor and Laurent series
1) If f(z) is analytic within a circle of radius R centered at z = a, then for any z such that [z—a| <R,

(z-a)®

f@) = f@)+(z-a)f @)+ Zf(a) +

Proof: Consider a contour C of radius r such that [z—a| <r <R.

f _ _ 1 f(S) _ oz
f(Z 27119ng zdS zggc (s—a)—(z— ds 27{19% [1 Zﬂ S_2_7'11'9€C (s—a)(1— ’t_%‘
1 f 1 a v 1 a)™t f(s)
(Z) = m§c —a Z t ]f( )dS Z 27”(2 Ll §C k+l ds + 2m §C "+1 1- (ig) ds
)n+1 |Yl+l

n (k) _
-y L k!(“)(z—a)k+Rn(z,a). IR,| = ﬁbﬁc ot [ ds| R Y

<
U
~
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e Expand f(z) = 71 about 2= 1. f/(z) = Ggpufu>=—; f%ﬂ=qm3pf”0%=%ufu)=%—§ﬂz—U+§ﬂz—U2—~
e Expand f(z) =sinz about z = 7. f(2) :1—%(2 —) 1( )
(2) Suppose f(z) is analytic on and between closed contours C; and C2 with radii r; <r,, enclosing z = a, then

(o]

= Zak(z—a)k+Zbk(z—a)_k = Z a(z—a)k, where a; = %ﬁ G fis)lﬂ 96 f(s)(s—a )1 ds.
k=1

k=1 k=—c0

e We can choose a to be an isolated singular point of f (not a branch point). The regular part will converge to the next
singularity of f(z). If the principle series terminates at k = 1, f(z) has a pole of order n at z = a. If the series doesn’t
terminate, then a is called an essential singularity

o Expand f(2) = 5 # aboutz=0. f(z)=1(1-2) =11 +z+22+)=Lt1+z+22+....

e Expand f(z) —szaboutz—Of (z—§+%)zz%—%+%—m.

e Expand f(z) —el/z aboutz=0. f(z —1+%+%ZI—2+ - = Essential singularity at z = 0.

(3) Consider f(z) = ﬁ Find and classify its singularities. sinz = 0 for z = niw. Write z = n1t + s, sinz = sin(nm+s) =
_1) _1\ -1 1\ _1\n

cosnrsins = (—1)"sins = (—1)”(5— %s3+~~) = f(nm+s)= 57(%% = %(1 - %524....) = % + %s+--- (simple pole).

3.4 Residue theorem
(1) The residue of f(z) at z=a is the coefficient b; of the Laurent series of f about z = a.

(2) The residue theorem. Suppose f(z) = Y ax(z — a)k + Y br(z—a)7%, consider the integral around z = a4, with no other
k=0 k=1
singularities within the contour. 99(z—a)k dz=0fork=-1, 99(2—51)’1 dz = 2mi. Thus ggf(z)dz =2mib; = 2mires(a). In general,

if f(z) has singularities at z;, z;, --- within C, then 95f(z)dz =2 Z]- res(z;).
(3) Suppose f(z) has a simple pole at z = a. Then g(z) = (z—a)f(z) is analyticat z=a = g(z) = go + (z—a)g; +---

= f(2)= 5 +81+0(z-a) = by = g = g(a) =lim {(z - a) f (2)}.

(4) Example.
- 1 1 1

ogﬁ Adz:§ l(1+L)dz+§ l(l+ )dz —(2mi+ 0+ 0+ 2mi) = 2mi. | Using properties ofé —dz

c2(z-2) c 2\z z-2 C22 z cz

z—1 1(z-1 1 f2 .. . ,

. dz = —( )dz+ dz+ dz =mi+ni = 2mi. (Cauchy’s theorem)

c2(z-2) c, z\z=2 C, 2 2 z Cz

21 dz = 2mi(res(0) + res(2)) = 2mi hm Z- 1 + lim | ( 27(1(1 1) 27ti. (Residue theorem)

o (D ———dz="2mi(res

c2(z-2) z(z 22 2 2
(5) Consider f(z) = %,g(a 20, h(a) = 0. Expand h(z) = )+% h— a)zh”( )+---, then res(a) :iig;{(Z_u)h,(a)(i;)zg_(:))zh,,(a)er}

8(2) _ 8a) _ 8@ _ 8(20)
= £1£; W e = Suppose f(z) = if zg is a simple zero of h(z), then res(f(z)) = ;7 (Z‘;)
o f(z)= sz, res(0) = 1111(1) s = 1. For residues at z = n7, write z = nmt + ¢, sinz = (-1)"sin¢, res(nn) = zlgrlzln an?:) =(-1)"
Consider f(z) = mlﬁ = i(( ; = res(nmw) = ﬁnn) =(-1)".
(6) Suppose f(z) has pole of order n at z = a. Then g(z) = (z—a)"f(z) is analytic at z = a and has expansion g(z) = g(a) + (z—
a)g'(a)+-+ EL @)+ = f(z)= S = 8@ oyt (=1)(g) 4 --- = res(a) = gt
g (n=1)! g = ) = ea) -1 & = "oy
1 ) dm- 1 ;
resto) = 1Ly i el

(7) Consider f(z) = lnz(:;) In(1-2) :—z—é—--- :z(l +%z+---), ef—1 :z+22—2!+---:z(1+ %z+---):>(ez—1)2 =22(1+z+---).

= f(z) (llri:)) —%(1+%z+---)(l—z+m):—%+%+O(2) = A simple pole at z = 0, with residue -1.
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3.5 Definite integrals

©  dx
I = ——— = lim On C ite z = Re'?,
( ) wa2+ﬂ2 R1—>00J\RX2+(12 J\ é LR Rowi

1 1 dz R— dz
= . < 0=>1= ———— = 2mires(ia) =
|22|—a2 R?2-a?" |Jc, 22 +4a? Rz—a2 c, 22 +a?
0 27
(2)I= f <% é 98 é = 27'(1 res m/6) +res( 17'(/2) +res( ’5”/6)] .
xX°+a C, C, C; 3[1

(3) Fourier integrals. I = Joo f(x)e’*™dx, k > 0, with lim |f(z)| — 0 in the upper half plane
-0 Z—00

zz+a2 -

of z. Assume also f(z) is meromorphic in the UHP. Then I = J%EEOJ—RR = 1%1_{20 Ig. On Cg, R R ?B
write z = Re’? and suppose that |f Reie ‘ < ¢ for sufficiently large R = UC )eikz dz| = |JC Reie)eikR(C039+iSi“9)iRei9 d6|

< eR [ e RO 4O = 2R 2 e RO 4 < 2R 7 e 2KROM = (1 - e HR) LD 0, [ fupeifidx =+ +

= me )e'k* dx = 27ti(sum of residues from poles in UHP), in the condition (i) k > 0, (ii) f(z) is meromorphic in UHP,
(iii) f(z) — 0 for |z| = co in UHP.

e Jordan’s Lemma: Consider a continuous g(z) defined on a semicircular contour Cy = {R619|9 €0, T(]} in the UHP. If the

function is of the form g(z) = f(z)e’*? with k > 0 and |lllm f(z) =0, then I%Im JCR )eikz = 0.
Z|—00 —00
oo ikx eka P o0 ikx 7T
ol = ——dx, k>0,a>0.I=2ni(ia) = —— = —e ¥, For k < 0 consider the LHP. dx = —¢ ke,
—eo X2 +a? 2ia a4 oo X2+ a2 a

- -

(4) Integrand with branch point. Consider I = J a
0o 1+x

dx,0<a<l. f(z)= has branch point at z = 0.

14z
Im 0 .—a,iab 1- 27 pea —ia0 1-
A ap=ial a R @eia® . Rl-a
I = £ ¢ el do. L] < S RN} Iz = 2 ¢ _iRei? do. |I3] < 27 ~
I o 1 +eet? 1-¢ o 1+Ret? R-1
A € —a ,~2mia . R ~a .
I I 2R~ — 0. Write z = xe?™, Iy = J‘ S g —ezmaj X k= —e?miay,.
Y > R 1+x e 1+x
-1 N I, Re ForR—oo,e—=0. L1 +Lh+I3+14 >+ = 12(1 —ezni"‘) = 2mires(—1) = 2mie” ™%,
= Iz(eim —e’i”"‘) =2isin(na)l; =2ni =1 =1, = — T
sinma y
(5) Cauchy principle value integrals. | = Loo Siﬂ. The integrand is analytic at x = 0. Consider
I= Jff:o % such that J = Im(I), where J(_ is defined as llm(17 +J ) Consider the path I, a
integral Ip, + I, +Ip, + Ir = 0. Jordan’s Lemma = Iz =0, I, = f: % —iTt. -R ¢ Re
= I=1Ip +Ip, =~I, =in, ] =Im(I) = 7. 4
*© dx e el ]
Ip = ——Ip +Ip +1,+Ip = 2mires(i) = ——=(1+1). I[g > 0, I, = —mires(l) = —— 1
wlp=f gy In T = 2rives(i) = <5 (1) I =0, m=-2 i
I L i T Py Ip,
— = —— + + — = ——. % >
P 2( i) > b R —-£1l¢& R Re
(6) Summation of series. Consider f(z) = Ziz cotz, which has order-3 pole at z = 0 and simple poles pIm L+il
at z=nm, n = 0. For residues at nm,n = 0, write z = n7t + w. cotz = gfs((z;tz)) = Ej))ngsz =cotw =
1_1 1.3 5y 1 __ 1 1_1 _ 1 1_1 _ 1
v~ 3W—gsw +Ow?’). ;cotz= (nn+w)2(5 - §w+---) = res(nm) = 1}}1210 (nn]fw)z(ﬁ - §w+---) =
212, n # 0. For residues at z = 0, 2cotz— L(%—%z+(’)(z3)): 21—3—§+O(z) = res(0) = —3. ! Re
Consider a square contour with L = (N + 7)7‘(. On the contour,

cos(L+iy) _ —sinLsin(iy) _
sin(L+iy) ~ sinLcos(iy) —

# = xz-}—yz < L. On the vertical side z = L +iy, cotz = =—tan(iy) = —itanhy
) ) ) ) ] ) . . l[ 1(x+1L)+e—1(x+zL)]
= |cotz| = [tanh z| < 1. Similarly for the vertical side L —iy. On the horizontal side z = x +iL, cotz = —i[ )l | =
(

2

,gixe—L+e—ixeL - l'e—ixEL L _ _ 1 1
T o L N Tl > (el > e LforL — co) = |cﬁ cotzdz| < L2 8L — 0. 99 5 cotz =res(0)+ ) res(nm) = 2mi|—5+ ) ——
n=0 n=0
y L= 2
n2 = 6°

n=0

n2m?

)-
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4.1 Introduction to differential equations

(1) First-order linear equation v’ + P(x)y = Q(x). Let I = dex, cf—x(yel) =el(y+Py) = Qel = ye! = JQeIdx +C.

e The Bernoulli equation y’ + P(x)y = Q(x)y". Let z= '™, 2’ = (1 - n)y~"y’. Multiply the equation by (1 —n)y™"

= (1-n)y"y’+(1-n)Py'"=(1-nQ =2 +(1-n)Pz=(1- n)Q = linear first order equation.

(2) The differential equation P(x, )Jdx+Q(x,y)dy =0ory’ = -0 P is called exact if 22 ap aQ . In this case there exists a function

F(x,v) such that P = a ,Q= ay dF = Pdx + Qdy. The equat01on Pdx+Qdy=0= dF = F(x,y) = const.

e The equation xdy — ydx = 0 is not exact. but Xdyx—zydx = d(;) =0is=> % = const.
(3) A homogeneous function of x and y oof degree n means a function which can be written as x”f(%) An equation of the
form P(x,y)dx + Q(x,y)dy = 0 where P and Q are homogeneous functions of the same degree is called homogeneous.

It can be written as y’ = dy = %’3;)) = f( ) Substitute v = y = xgz +v=f(v)=> f(g;j—v = % (Separable form).

(4) Second-order differential equation ﬂzj vy gi +agy =0.
Equation Auxiliary equation Solution
y +5y’+4y=0 A2 4+51+4=0,1=-1,-4 p=cre ¥ e
y” 6y’+9y=0 (A-3)2=0,1=3 _ y:.(Ax+B)e3x
my” = —ky or y”" + w?y =0 M +w?=0,A=+iw y = Ae'! + Be™'%! = ¢y sinwt + ¢; cos wt
(5) The wave equation V*¢ = o a—t(f In 1D, gxq) = %a—(f The general solution: ¢ = f(x —ct)+ g(x +ct).
e Consider the boundary condition qb(O t) = c[)( ) 0 (V1brat1ng stretched strmg) Seperation of variables: ¢ = X(x)T(¢)
> +55=5+55=-k = P(x,t) = sink,x(A, cosw,t + B, sinw,t).
Xax? = 2T ae T(t ) A cos(ck f) +B sm(cknt) Plut)= L sinkx(4,coswyt+B,sinwyl)
4.2 Fourier series
1) The functions sin 7= and cos 27* form a complete basis.
T P
L' nmx nnx L nmx | mmx L nTX  MIX ]
J. sin — cos —dx = J- sin — sin dx =Lé,,,, J- COS —— COS dx = Lo, (m=n=0).
—L L L —L L -L L L

(2) Given a function f(x) with period 2L in the range [—L,+L], the Fourier expansion:

> 1t 1
_a70+;(ancos?+bnsin?), an:ZJ\Lf(x)cos?dx, b, = ZJLf(x)sinLydx.
o If f(t) is periodic in [0, T], write w = ZT” f(t)= “0 + Z (a cos T/2 + b, sin T/2) = f(t) = 70 Z (a, cos(nwt) + b, sin(nwt)).
1 n=1

n=
e The expansion is valid for any function satisfying Dirichlet’s conditions.
(i) The function is single-valued. (ii) The function has finite number of discontinuities. (iii) J_LL |f (x)|dx must be finite.

—ib +ib
(3) Writing cos 7% and sin 2% as exponentials, define ¢, = %2572, ¢, = 25270,

f(x)= +io‘cnexp(zn— Jf X)exp z—)

(4) For non-periodic functions, consider the period (-L,L) to an infinite extent. Write k,, = %, Ak =

T
T
f(x)= Z cexpl(ik,x) = 27m Z 2Lac, exp(ik, x)Ak—ZM Z F(k,)exp(ik,x)Ak, F(k,) 2Lacn—aj x)exp(—k,x)dx.

n=-o0o

L—>oo:P(k):aJ: fx)e ™ dx, f (x) = ﬁf_ F(k)e**dk. F(k \/_J fx)e ™ dx, f (x) = \/%f_ F(k)e'**dk.

L, , 1
(5) Consider the square function f(x) = { x€(0

1 xe (_1,)0)=> a,=0,b, = —f_ol sin(n7mx)dx + fol sin(nmx)dx = %(1 — cos(nm)).

17
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(9]

= f(x) Z " sinnmx =

4 & sin[(2n-1)mx] _ 4 (si in[3
4 Z ’ _ E(sm[nx] " sm[37‘cx] P

sin[(2N-1) nx] )
-1) T °)

2N-1

(6) C0n51der f(x) = x? confined to [-L, L] and repeats outside the region. b, =0, a,, = %f_LL x? cos M dx. ag = 2L2

L in(aL ’ L 2L2%sin(al) . 4sin(al 4L L
Let g(a) = 1 |, —cos(ax)dx = —%% (a) = 1 |, x*cos(ax)dx = —%[— sin(al) 512(30( ) _ fcosta )] Let o = 2%, a, =
4L%(-1)" 2 &
e (n1>0) = f(x)=x? =5+ 4
. _ 4 (sin[nx] | sin[3mx] sm[ (2N-1)7 AN e
(7) Gibbs phenomena. Consider the square function f(x) = E( Tty NI )
The overshoots occur at the turning points f’(x) = 4(cos|[mx]+ cos[37tx] + -+ cos[( 2N—1 )x]) = 0.

SIn 71X

f(x)= 4RE[Z€ (2n-1)m ] 4RL’[SmN”x ’N"x] ZSTmZNm 0 = The first maxima is x = 5§.

sin[i] sin[3—"] s % (2N-1)1
f(%)zél[ S i N :W smc[ N]+smc[ ]+ +smc[T]).
lim f(ZN) = 11m —(Ns1nc[2N]+ N51nc[2N]+ + %sinc[m\gﬁ)n]) = lfon sinc(x)dx =~ 1.17898.

N—oo

(8)Theparabolaatx:0,§+4n—1“22 1(;) =0= 1
n= n=

(9) The mean value ]_‘ = 21—L f_LLf(x)dx = ”70 I_LL[f(x)]zdx = an f_LLf(x)dx + I_LL H)O::l f(x)a, cos "F=dx + I_LL

= 2= g [[1fPde= () + T (e +03).

(10) Consider the second order differential equation itz + p dt + ry = f(t), where f(t) = f(t+T). Drive frequency W=

412 1
R—Z—ﬁ L?=n’=

™38

1 =6C(2).

n

1
f(x)b, sin "= dx

™18

n=1

27‘(

Expand f(t) AO + Z (A, cos(nwt)+ B, sin(nwt)) and y(t) = L + Z (a, cos(nwt)+ by sin(nwt)) = y’(t) = - Z nw(a, sin(nwt)—

n=1 n=1 n=1

» ) 2 . c —n2w?+r pnw
b, cos(nwt)), v”(t)=— Y (nw)*(a,cos(nwt)+ b, sin(nwt)). Substitution = ray = A,
n=1 —pnw -n’w?

2.2
ap\ _ 1(—n"w+r  —pnw A\ 5 5 2 - 2,12 _(A%+BZ)
:(bn)—A( prw —n2w2+r)(B ),A—( n“w”+r)”+ (pnw)-. Notice that (an+bn)— A .
e For large values of 1, A o n* = High frequency harmonics are strongly damped.

e Set r = w}. For p = 0 and the drive frequency is much larger than the natural resonance frequency (1w > wy),

a, — —ﬁAn. The amplitude is strongly damped = The system cannot respond to be driven faster than its natural
frequency of vibration. For small p, the maximum amplitude excited corresponds to nw =~ wy.

e When A, =1,A,,=B,=0.4a,= %(wo ﬂ2w2) b, = %in,

Frequency Result

nw<wy  a,and A, have the same sign and the oscillations are in phase with the driving force.
nw>wy 4, <0 and the motion is out of phase with the driving force.
hw=wy  a,=0and the motion is confined to b,. The motion is 7 out of phase.

4.3 Laplace and diffusion equations

, Lo 0? 2 2
(1) The Laplace’s equation is of the form V?¢ = 0. In 2D 9—4) 8—4) 0. ¢(x y) X(x)Y(y)=> %?iT)Z( + %‘317}2' =0.
(2) Consider the boundary conditions ¢(x,0) = ¢(x,L) = ¢(0,v) =0, ¢(L,y) = V. Lettmg X3 X = —% ‘3127}2] =k?
= Y(y)=Bsin 2. X(x)= A exp( ””X)+B exp( "”") = ¢(x,p) Z y[A exp ””x) +B, exp(—”T"x)].
n=
¢(0,v) = i(A + B,,)si Ty:O:An:—anX =2A smh( ) ZZA smh(nrc)sm(Ty) \%

2Ansmh(nn)% = fo Vsm(%)dx = %(1 —-(-1)")= ¢p(x,p) = % d% msmh IX sin "Zy.
o] n

(3) The diffusion equation is of the form V?T = % %—f T can refer the the temperature or the density of particles.
(4) The heat energy Q = cmT. The Fourier’s law of heat transfer: Q% = —K%—z, where K is the thermal conductivity.
e Consider a uniform rod with density p and non-uniform temperature. The heat energy of segment [x,x + dx] is given by

JdT IT
T(otAD)-T(t) _ K [ I ]

Q = cpAAxXT (x,t) = cpAAX[T (x,t + At) - T(x,t)] = AtAK(—%—i ot %—z x+Ax) A = A
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In the limit Ax — 0, At — 0, ‘; 9T - alz %—f a’= % is the thermal diffusivity. In the steady state 99—{ = 0 and reduces to the

Laplacian equation. Boundary conditions: (i) fix T on some surface; (ii) fix the rate of heat flow across a surface.
Example: A wall of a refrigerator is initially in steady-state with the inside at T; and the outside at T;. Suddenly the
wall is moved outside where the air temperature is also T,. What is T(x, )?

T(x,t)=X(x)O(t) = %‘57)2( = ZL@% =-k? = X = Asinkx + Bcoskx, O(t) = e * k't 0. Let T = Ty + T.
(M -Ty)x
0=,

= V2T = i— and V?T, = 0. Boundary and initial conditions: T(0,¢) =0, T(d,t) =0, T(x,0) =

= X, (x) = Aysink,x, k, = 7. T(x,t) = Z A, exp(—azk%t)sinknx. T(x,0)= A, = (T, - TO) —(=1 1)mL,
n=1

O qyn+l
=T t)=2(T1-Ty) L %ef(ann/d)%sin% LT,
n=1

Consider a shift in the right hand boundary T(d,t) = To + AT. Now define T = T+Ty+ AT3. T(0,t) =0, T(d t)=0.

T(x,0) = Ty+ 150 x = T(x,0) = B0Ay — T(x,t) = 2(T; - Ty-AT) ¥ H}l"” e-lamm/dPt gip nmx g L AT
n=1

4.4 Fourier transform
4.4.1 Dirac function

10f o ]
8l E <t ] l's — k=t |3 ]
[ — k=118 =1 | k o k sin (kx) =1 |
] — k=1 _ | K e k=21 _ — k=1
6 f(x)=kll(kx) k= 4 f0=4[—e 2 f)== ]
| |8 k=4 n — k=41 n
— k=5 | 3
4 k7 4 f0O=k Ao — k7 — k=61
— k=10 — k=81
2 — k=9 | 2 11
[ 1 _— ~—=k=101
of—— ‘ | of- — /1l lo N 7
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 10 -4 -2 0 2 4

3)_ i, xel-1,1] Lo(x) = kh_)rf)lo (%)e_k"z. o(x) = kh—g:o %sinc(kx).

(1) o(x) = kli_)r{)l()kH(kx). o(x) = kli_)r?okA(kx), where A(x) =

(2) Essential properties: liII(l) O(x) = oo, f_o; o(x)dx =1. f_o:o O(x —xg)f (x)dx = f(xg). 0'(x) = =0"(—x).

3) lim | _"k e~k dk = Jim L.(e—ikx —elhx) = Jim Zsin(kx) = lim 2ksine(kx) = 276(x) = 6(x) = o 7 ek dk = §(—x).
= [T f(x)o(x' —x)dx’ = £ [T [T *lkx ~f )dkdx = o [T 7 fx)e ™ dxe*rdk = & [ F(k)e**dk.

(4) The Fourier transform pair: f(x) = %J F(k)e'kxdk, F(k)= '[ f(x) ef'kxdx (Physics definition).
e Note that F(0) = foo f(x)dx. The total area under f(x) is given by the Fourier transform at the origin.
(5) Consider f(x) = Z c, e/l L= Y c,e'™. The function f(x)= Y &(x—2nm)has period 27. The coefficients

n=-—o00 L=t p=—co n_—oo

=2 Oznf(x)e"‘""dxziz E 8(x—2nm) = 2 Z e!"* For period L, Z S(x-nL)=1 E e 2nmx/L
J & (x— afx)dx fozof ndéo(ox a) = f(x)o(x naFo —f O(x— a)f’ n:ooj_ooé’(x—a)f:x)dojc=f’(a).
eLlet f(x x,fozox (x)0’(x)dx = - f o(x)d[xg(x) f o(x)[g(x) + xg’( )]dx:—J_O:oé(x)g(x)dx:xé’(x):—é(x).
eIn general, Loof (x)o™ (x)dx_—foo dfé” L(x)dx, x”é(”( )=(- ) n!é( ).
(7) For >0, [~ 8(ax)f (x)dx == 1 [~ 5(p)f(%)dy = 1£(0)= 1 [ 5(x)f (x)dx. Generally 5(ax) = Lo(x)
(8) 5(g(x)):§m (x—x;), where g(x;) = 0 and g’(x;) # 0. 5(x* —a?) = ﬁ[é(x—a)+6(x+a)]. (x=a)(x~b)) = Aylo(x—a)+d(x~b)]

4.4.2 Fourier transformation

1, x€[-a,a]

= {i STl = o= (et - s o
e Width of the distribution Ak ~ 27”, Ax = 2a = AkAx =~ 7. In general AkAx > l

2 2.2
(2) f(x)= 27we p( 202) F(k) = 21710 f_ozoexp( 2Gz)exp( ikx)dx = \FU foo exp[—(ﬁ+i’\‘—g) —kT"]dx
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27‘((7 ex p( )J-_D:o eXP(—éz)\/EUdé = exp(_#)'
RS- [ 1F ()Pdx = [ [F(k)2|dk (Math defn.)

| 2 If@Pdx =2 [T [T F(k)e'**dk [T F*(k')e ™ *dk’'dx = [* F(k)dk [ F*(k')dk’5= [* e'**)dx = [* |F(k)]*dk.
(4) Convolution. h(x) = f(x)+g(x) = [~ f(x—x")g(x')dx’ = [ f(x')g(x—x')dx". H(k) = aF(k)G(k). a = 1/V2m (Phys./Math.)

H(k)= [T [T dxdx'f (x - x')g(x)e~ % 5 2 dx'dTf(Q)g(x)e e = [ g(x)e ¥ dx’ [ f(C)e 0 dL.
o I'(x)=f(x)*g(x) = f( ) ’(x).
e Fora= %, h(x) =TI(x) joo IT(x")T(x —x")dx” = A(x), H(k) = smcz(%) (Math.).
(5) f(x) = 2= [~ F(k)e ”"‘dk, ;‘X (x) = an ikF(k)e lk"dk:f[dx x)| = ikE (k). ]-'[f ] (ik)"F (k).

— 1 1/2 l
(5) Define U = [ |f(x)dx = [~ [F(k)Pdk, f (5 [ rr =[S Og° ) dx ]1/2
*° * k=(&] k|Pk|dk Ak:[ ( k|dk]

Assume ¥ = k = 0. F[f'(x)] = ikF(k :>j If(x |dx_[ K2|E(k)|>dk. (Ax)2(Ak)? = ([ X|f (x)Pdx)( [ 1f(x)ldx)-

[/ laGoPds [ poPdx = | [ 0 (bxids|” = (Ax2(8K12 2 5[, o (0)f ()] —wzlfm x&f P = | [ xaif (o
= sl f P, - [ If(x |dx| aU%= i = (Ax)?(Ak)? > 1.

4.4.3 Wave packets

(1) Substitute a forward travelling wave ¢(x,t) = e ikx=wt) to the 1D wave equation = w = ck. For a plane wave ¢(r,t) =
e!(k1=01) we have |%| =cand k-r = «a is the equation of a plane perpendicular to k.

(2) General 1D wave equation can be written as ¢(x, \/_f G(k)e!kx—«®)t) 4k, G(k) is the Fourier transform of ¢(x,0).
e Waves travelling in the same speed c: ¢(x,t \/_ f G(k)e'®*=¢t)_ The shape of the wave is unchanged.

) . 2(k=kg)?
. ; _ Likox ,~x%/A? — _ 1 [ ikox,~x*/A? ~ikx g, — A )
(3.1) Example: Gaussian wave packet ¢(x,0) = e'*0*e . Fl] o Loo efo¥e e " Xdx ne !

!kt dk, Suppose a)(k) is dominated by the region in the vicinity of k = kg,

A2 (k—kg)?
A _TO

= ¢(x,t) = \/%7[_0; Ve

w(k) ~ w(ko) + @’ (ko)(k — ko) = kv, + vg(k — ko). Thus ¢(x, t  Glk)e!kx—wot-wolk=ko)t) g
0 0 0 0% g 0 r
~ V;_n i(kox—wot) f G (—kox+kx—w((k—ko)t) dk ~ ¢ i(kgx—wqt) J‘ G ) (k ko)(x— wot)din‘
e The first factor corresponds to a wave with k = kg and phase velocity v, = w,(j;‘)). ,
ot . . . (=)t
e The second factor foo G(k)ei(k_kO)(x‘“’ét)\‘/iTL I ikey I‘X’ G(k)e’kiji =e kv p(y,0) = o—ikoy ikoy o-y* /A2 _ ;m 32 ,
—00 i - T
which is the envelope of a wave moving with speed v, = % ko = w)).
e The overall integral ¢(x,t) = ikox=wot) g=(x=w)/A% — pilkox—kovpt) o~(x—vgt)*/A%,
e In general, v, = ‘;{’,%”:%%—kﬂz:% vkp:>vg_v +kdv".
(3.2) Consider a higher order expansion w(k) ~ w(kg) + @ (ko)(k ko) + 3" (ko)(k —ko)? = =vpko +vg(k—ko) + %I‘(k —ko)?.
- C (o A AR ik (kg ko g ST (Ko ) (ko )t ] _ A k() _( xvgt )2
In this case ¢(x,t) = N f_oo V° 1 P st 2 = me r exp o) |
Write o, = V2A, o (t) = oy, 1+ 5 rz , then ¢(x,t) = e'kox=vpt) Gx exp[ ((x—vg )/\/20 ] ( - ﬂ)
N Vs
e The envelope ¢(x,t) = o(ﬁ) (1 + tg—l;) e 2°0 . As wave propagates in time o (t) grows = The wave broadens.
. . e—ateiwot, 0 S t S Io%)
(4) Example: Exponential damped cosine f(t) = {O, <0 . G(w) \/ﬂ fo “lailw-wo)tdt = ﬁm

e The intensity |G(w)| = Tw)) (Lorentz distribution). It is also the spectrum emitted by an atom as it decays to a lower

energy state with lifetime ~ I/a. In this instance, we cannot measure the frequency better than ~ Vlifetime (width). For an
atomic transition we have AEAt ~ i or AwAt ~ 1.
(5) The diffusion equation of particles n(x, t) is given by % = Il) ((9 . Consider a drop of ink, n(x, 0) = S6(x)

e Take the Fourier transform of the equation = —k*N (k, t) = 5 L9 a(f 1N dlc‘l]tN —k?’D = N(k,t) = Ny(k)e~ Dt
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= n(x,t) = 5= [ N(kt)e**dk = 5= Jf:oNO(k)eikx‘Dkztdk. No(k) =N (k,0) = [~ n(x,00e ™ *dx =8 [~ 5(x)e*F*dx =S.
= n(x,t) = 5 [T ek DRIgp = 5 (% exp[—(\/Dtk— 2«%) — 2 |dk. Let & = VDtk - or

oo a2 A
:n(x,t):;_nj_ooefé ~4D \/_é_t ifﬂjﬂj 2d§:>n(x,t): x/%e D7,

4.4.4 Green’s function

alx|

(1) Consider f(x) = -5, F(k) = F[f(x)] = -5 LOOO e¥ekrdy - L Jooo e~ eikx — _

o [ glx - xo)ekidx = ek [ glxjeiirde = Flglr—xo)] = e 0 Flg(n)] = -5 = -5
(2) Consider the differential equation % a’g(x,x’) = o(x —x’) ; G(k) = —% = g(x) = _eth

e Convolute both sides by f(x) = (F —-a )j gx—x")f(x")dx = jf:o o(x—x")f(x') = f(x). Let p(x I f(x

= ;—Xzzy( )—azy( ) = f(x). v(x) is a solution for a general RHS f(x)

el

(3) g(x) = —%=,— is the Green’s function.

o(r) ; : 1 1
2% Taking the Fourier transform = —k’G(k) = -1 = G(k) = ;.

(4) Consider the Poisson equation V?g(r) = — =

* T 2n ik 0 o
= g( 27.( f G Ik Td3k = (271_[)3 kzdkfo sm@dejo ﬁe’k rdq‘) = — 1 dk IO ezkrcostcose
— foo dk [ lkrcos@] 1 0o 2sin(kr)dk _ y=kr 1 J-oo zsmyd 1 1
= 0 ikr ~ (2m)2e Jo kr dy:r-d-k_ (2m)Zer Jo 7 V= Tner = —4ns|r|'

(r

e The solution of V2g(r) = is given by the convolution ¢(r) = p(r) * g(r) = f %dr"

4.4.5 Fourier transform pairs and misc

1, x>0 {lime"”, x>0
- =Ja—0

CE(k) = ‘x’efaxefikxdx e —(a+ik) Xdx = —_lef(aﬂ'k)x
0, x<0 o, <o T J ko’ ‘

a+i 0

(1) The Heaviside function H(x) = {

—_«a i J“X’
T a?+k? T a?+k? -0 a +k2

dk = arctan( k)r_’; =7n = F(k) = lim

lim (o —i ) = 7o) + . FIH()] = mo(k) + -

1, x>0 1

(2) sgn(x) = {_1 <0’ sgn(x) = 2H(x) - 1. F[sgn(x)] = 2rd(k) + % —2mo(x) = # Flsgn(x)] = 7-

(3) Top hat I'1(x) for a = % FI(x)] = s1nc( ) (Phys. defn.). IT(x) = H(x+ %) —H(x— %), FI1(x)]
= 2151n( )(né(k) ) 27 sm(%)é(k) + 25%“{/2) = sinc(k/2).

(4) Consider the convolution [~ f(x')H(x - x)dx" = [*_f(x)dx’. ]—"[ [*f(x)dx’ ] F(k)(& +mo(k)) = BB 4 7F(0)5(k).
(5) Consider h(x) = TT(x)*IT(x). h’(x) = IT"(x) = TT(x [H’ X+ 5 ) H’(x—j)]* :[b X+ 5)—6(x—%)]*1‘[(x)

= W(x) =TI(x+3)-TI(x = 3) = H(x+ 1)~ H(x)— H(x) + H(x— 1) = H(x + 1) - 2H(x) + H(x~ 1)

= h(x)=r(x+1)-2r(x) = A(x), where r(x) = xH(x).
e Consider h(x) =TT(x)* A(x) =TI
2)-

(eik/Z _ e_ik/z)(ﬂé(k) + #)

r(x

= r(x + 3 ) 2r(x + = X —
= h(x) = q( ) 3q(x+ %

4.5 Special functions

~ wl~

4.5.1 Taylor expansion

X X

(1) f(x) = f(@)+ [T f(dt = f(a)+ [T f()d(t—x) = fla)+ (t=x)f (1) [ = [T (t=x)f"(t)dt = f(a) — (a—x)f"(a) - [ (t=x)f"(t)dt
= f(a)+(x—a)f (a)- fo”(t)d[“"‘)z (a)+(x=a)f (@)= 2 (=27 (0) [+ [ 2 (1) dt = fa) + (x—a)f (@) + S5 () + .

(2) Maclaurin expansions
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f(x) Series Domain f(x) Series Domain
¢ lax+L4E b xeR (140 ltax+ 25D F (o y<1
2! ! 2! - n

n=0
. 3 5 2 3
sinx x-L+5 - xeR In(l+x) X— 45— x| <1
2 4 3
Cos X 1-5+5—- xeR In(l1-x) —x—%—%—--- x| <1

4.5.2 Hermite’s equation

(1) Hermite’s equation is given by 2xdy +2ny=0.Lety = ): agxk, y = Z agkxk1, y” kzzakk(k —1)xk2

= Z Ao (k+2)(k +1)xk -2 Z agkxk +2n Z pxk=0= Z [apso(k+2)(k+1) = 2kay + 2nag]xk =0

2(k—n)
(k+2)(k+1)
elfay=1,a; =0and nis even. hy(x) =1, hy(x) =1 —2x?%, hy(x) = 1 — 4x? +%x4.
elfay=0,a; =1and nisodd. hy(x) =x, hz(x ):x—%x3 hs(x) =x— §x3+ 145x5

(2) The schrodinger equation of QHO: —ﬁlp”+ Imw?x*P=Ep = "+ [sz —("’—“’) ]l,b 0. Define a = %, B = 2mE

= Ak+1 =

ap =7y = ao[l - 22’,1x2— M ]+a [x+ (2 3!2")x3+ (2= 2";(!672")x5+-~].

:%Hﬂ xX2)p=0. Let & = \/—x:>d<§z (E-&2)p=0.1f (&) = Ae */2H(&) then §4 G 28 f+(fe-1)H=0.

4.5.3 Legendre’s equation

2 (]
(1) Legendre’s equation is given by (1 —xz)j% - QX% +I1(I+1)y=0.Lety = Z a,x",y’ = Z na,x"!, y” ng n(n—1)a,x" 2.
1)-1(1+1 ~1)(n+1+1 3
= a,p = U = B g = p=ag[1- 101+ 1) % + (1= 2)I( 1+1 )’;—]ml[ D(+2)%; +-].
: : : 1o 1 _ 1 _1 _1(1_p\l/2
(2) Consider the expansion of electrostatic potential S = R = Ve o ~ R Y oY =z(1=p)

:%(1+%ﬂ+%ﬁ2+%ﬁ3+128ﬁ4 ).Letx:cos@anda:%,S:—(1+—(2ax 2) (Zax a2)2+---)

Z RZ+I PZ(COS 9)

— S = %(1+ax+ 3"27*10(2+- ): %(PO( )+P1(x)a+P2(x)a2+--~)

e For several charges g;, the electrostatic potential at R is given by ¢ = % Z R’+1 [Z qir IZPZ(COSG )]
=0

3 5

(3) When [ is even, y = ag+a,x* +agx* +- -~+a;x!. When [ is odd, V= a1x+a3x +asx®+---+a;x'. When y(1) =1, the solutions

are known as Legendre polynomials. Py(x) =1, P(x) = x, Py(x) = %(33(2 - 1).
(4)Let L2 =—(1- xz)(f—;2 + ZX%. Then the eigenvalue equation L?P,(x) = AP,(x) has eigenvalues A = I(I + 1).

(5) Orthogonality: I_ll P(x)P,(x)dx = 21+1 Olm-

(6) Legendre series expansion f(x) Z B(x), xe[-1,1],¢ = %(2l+ 1)Ij1f(x)1’l(x)dx.

1, x€[0,1]

0, XE[—I,O)'CI 21+1I f(x)P(x)dx = f(x ()+ =P (x )+%P2(x)+

e Consider f(x) = {

I
(7) Rodrigue’s formula. Pi(x) = 5 fl,(xz— 1) .

4.5.4 Bessel’s equation

(1) Bessel’s equatzon is glven by x? d y + sz +( 2);} = 0 subject to boundary conditions: p is finite at x = 0.
(o) (o9
Lety =x° Z a,x" = Z a,(n+ s)(n +5—1)x"* + Z ay(n+s)x"™S+ Y a, x5 —m? Y a,x" =0
n=1 n=0 n=0 n=2 n=0

eForn=0,s=+m.Forn=1,a, =0unlesss=+m=—1. Forn>2, [(n+s)2—m2]an+an_2 =0. Take s = +m > 0.

(-1) agm!
221 j\(m+j)!

TN ngk
T

= ]) (%)m+] = ZJ(X) = aoZMm!]m(x) ( JO:O( ) W(%)nHZj

[Se]
= p(x)= Y a,x™" = = gom!2™ i
n=1 j=0

m m+2 m+4
o (%) = (%) —(mil)(g) +smn(3) + = 7To(0) =1, 1,4(0) = 0 for m > 0.

(2) Orthogonality: Io ]p(XT )]p(%x)dx = %]§+1(Xm)l where J,(x,) = 0.

2(12]'=
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4.6 Miscellaneous
4.6.1 Rectangular membranes

(1) Consider the transverse displacement of the membrane satisfying 2 4’ + dyf = :—29—4) with boundary ¢poundary = 0-
— 1d°X , 1d%Yy _ 1 1d°T _ ;2 1dX 2 14d% 2 14d% _ 32
¢ Py ) =X)YWT(H) = x gz + v gz = 2T gz = K- Let =k -y g =k vy =k
nxnx ny

= X(x) =sink,x = sin , Y(y) =sink,y = sin :y,T( ):Acosa)t+Bsina)t, where w = ck.

= ¢(x,9,1) = nxzﬂ nyzﬂ [Anx,ny cos(a)nx'nyt) +Byn, sin(a)n . t)]sm( M X )sin( ny;y )

* $(0) = f(x,9) = LA, sin(“5%)sin (ﬂ)—ﬂx,w $(0) =g(xy )ziwnx,nanxn sm("x’”)sm( ) =g(xy).
=Af;sin2(”"f‘”x)dxf0 sin (n ny)dy fo dxfo dyf(x,y sm(""m)sm( ) A== Io dxf0 dyf(x, vy sm(""m)sm(nyby)

BT and oscillates with @ = ck = CA /kz + k2

e Spatial normal modes are specified by k, =

e Lowest order: ¢;; = (Ayj coswyt+ By sinwyt)sin Z* sin Ty wip =ck=cm % + bl_z
e Consider a square membrane, w,; = wy,. Consider the linear combination ¢, — ¢p1 oc sin 2 sin == i y —sin y sin <££ 2“" .
= The mode vanishes along y = x, which is referred toas a nodal line.
Toa @ M) @@ @2 " @an
) o+ - i+
+ + | - +i—i+
— + —
[

‘ @ )
(© CIE

4.6.2 Waveguide
(1) Consider a rectangular stretched membrane attached at y = 0 and y = b, and the wave is free to move along +x.

. 02 0? 2 2
o Wave equation 55 29 a—;i) =3 atz O(x,9,t) = X(x)Y()T(t) = %—X —-k2X, ‘9 Y -KY, % %TZ =—k°T, ki +k; = k.
=Y =sink,p =sin 5%, X(x) = e’ T(t) = Aei®t 4+ Bei®t = ¢(x,p,t) = sin Ty[Ae ilkextwt) 4 Beilkyx-wt) ] and ‘;’—2 = (%) .
— General solution ¢(x,t) Z I ‘/_ sin by[A ikextwt) 4 B(k,)e i(kxx_“’t)]. vp = % =c 1+ 2‘2}122, Ve = :iiTw = TnZ

e Waves can propagate provided w > c* (A <2 ) otherwise k, is imaginary and will be exponentially damped.

S

?’E, J’E, | 0’E

Ly =5
P c2 ot?
¢ E, = X()Y(W)Z(2)T(t) = $X = —k2X, &L = g2y, &2 = k27, L& = 2T and k2 + k7 +k2 k2=,

dx? 'd2 v 270 2 42 T
For conducting walls E;(0,2) = Ey(a,2) = Ey(x,0) = Ej(x,b) = 0 = X(x) ~ sink,x = sin “7*, Z(z) ~ sink,z = sin "=,
2 2 2 © @ . .
= (ﬂ) + (%) + k}% = (%) . The field E}J = Rg Z Z (Amnelﬁmny + ane—lﬁmn}’)sin % sin %e—lwtl where ﬁmn — kymrl'

a
n=1m=1

(2) Consider the electric field for a Transverse Magnetic (TM) mode. The equation along v is i Ey +
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4.6.3 Heat flow

(1) Consider a thin circular plate with insulated edges. The temperature distribution satiesfies V2T = aL a—f

e In the polar coordinates, V2T = 1 gr(r%—Z) %2 g% = % %z with boundary condition ‘g =0 and T(0)=T(0 +2n)

T(r,0,1) =R(NOO)r(t) = £ L (rdf)+ 5528 = L=k = £ £ (r&)+ 122+ 540 =0 {ifﬁ_g%_f);fzrz =
© 402

— ©(0) = Acosmb + BsinmO, m € Z and r2‘ji—1§ + r(}i (kzr2 - mz)R =0= R(r) = J,,(kr) and ],’n(ka)d:gO (Kyn, n-th root)

= T = Jon (k) (A pan €08 10 + B,y sin mO)e=0 it | T(r,0,8) = Y. Tyu(r, 0, 1).
mn

4.6.4 Spherical waves
(1) Consider the wave on the surface of a sphere r =a. V2f(0,¢,t) = 1 %(sineg—g) + S T %az—f

a?sin0 a2sin20 dp2 ~ 2 It?
2 2 0(l+1 .
o f=Y(0,0)T(t)= -2 (sinO %L )+ m% = L4l = {80 = (1) = Acoswt + Bsinwt, w = £/I(T+1).
ﬁ % (sinég—g) sir1126 37}2 =—{(({+1)Y. The eigenfunctions Y (6, ¢) are known as spherical harmonics. Y = ©(0)D(¢p)

= 5‘89 ddg (s1n9‘é—cg) +0(€+1)sin’6 = —é, j;qz) = m?. For azimuthally symmetric case, m = 0. f(0,t) = ©(0)T(t).
— 5139%(s1n9@)+e(e+1)sm29 =070 4 1(1-22)90]4 00 +1)0 = 0= © = B(x), I € Z.
= f(6,t) = ZZOPZ(COSG)(Alcoswlt+Blsmwlt ywp = cA/l(1+1). ). £(6,0)=0=B; =0. f(6,0) = g(x) = g(x,0) = IZOPI(x)Al

1 1 -
= [, g()P(x)dx = A; [ PA(x)dx = FL = A= 241 j
e Consider an initial condition g(x) =Id6(x—1) = A; = 2”11 (6,t) = Z (21 +1)P(x)cos w;t with w; = £/I(1+1).

8 =2
1=0

— At the opposite side x = -1, B(-1) = (-1)! = oscillate in sign and interfere destructively except when cosw;t = (-1),

which will occur at w;t = In. Atlarge [, w; ~ %l = t = I (time taken to travel halfway around the globe at speed c).
(2) If the equation retained the ¢ dependence (m=0).

= D(¢p) = Aexp(im¢p), m € Z and sme i0 (sm@dg ) [ (I+1)-
= © = P/"(x) (associated Legendrefunctzons) |m| < L.

(3) Consider waves inside a sphere T3 (r2 z’:)+ L9 (sm@af) ! —f 12/ with f(a,0,¢,t) =

r2sin 9 20 r2sin? cZ 912

op?
o f(r,0,0,t)=R(r)Y(0,¢)T(r) = Y(0,¢) =Y}, and r2 dr(ﬂ%)—l(l:zl) de— —k? = T(t) = Acoswt + Bsinwt

— 4 (r24R) [k2r2—11+1)]R 0 2 LR gy dk (32 l(l+1)]

Boundary conditions = jj(ka) = 0=k =k;, = fum(r,0, ¢, 1) = ji(k;,r) Yy(

o ji(x) = 3 T1r1/2(x)

]@ Oxcose d[

sm9 %]"’[l(lﬁ-l)—%]@:o

pherical Bessel functions) = R(r) = ji(kr).

2T
0(S
0, 4))( nlm COS Wiyt + Bypy sin wy, t).
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5.1 The fundamentals of quantum mechanics

0. Postulates of Quantum Mechanics

(1) The state of a particle is given by a vector |1,b(t)) in a Hilbert space. The state is normalised: <¢(t)|¢(t)> =

e Consequence: superposition.

(2) There is a Hermitian operator corresponding to each observable property of the particle. Those corresponding to position
x and momentum p satisfy [x;, p;] = iho;;.

e The commutation relation for  and p is a formal expression of Heisenberg’s uncertainty principle.

(3) Measurement of the observable associated with the operator () will result in on of the eigenvalues w; of (2. Immediately
after the measurement the particle will be in the corresponding eigenstate |w;).

e Ensures reproducibility of measurements.

(4) The probability of obtaining the result w; in the above measurement (at time t() is |(wi|1p(t0))(2.

e The postulate expressed this way has the same content as saying that the average value of w is given by <1p(t0)|Q|l,b(t0)>.
(5) The time evolution of the state |psi(t)) is given by ih% |¢(t)) =H |1/)(t)), where H is the operator corresponding to the
classical Hamiltonian.

(6) The Hilbert space for a system of two or more subsystems is a product space.

e This is true whether the subsystems interact or not.

1. The propagator: U(t,ty) = e HHUEV/A Ut 10) = Y e Bttt ) (n], U(t, tg) = Texp{ J H(t dt’/h}
n

o it (1) = H (1) = (e +d)) = (1= fHe) (o) = [p(e)) = Jim (1= LHEFL) o)) = MO0 fp(ag)) = Ut )
o If [((t0)) = Xcy[n), then [ip(t)) = ¥ ¢, e Enlt=0)/ M),

2. An example: two state system with Ala+) = +|a+), Blat) = |aF).

. . . 0 1 10 0 1\, .\ fi B [ 1
e Representations under basis {|a+)}: |a+) — (1), l|a=) — (0), A— (0 _1), B— (1 0), |b+) = \/:(|ﬂ+> *la-)) — \/;(il)'
e Possible outcomes after measuringa =+1: P(b=+1) = [(b+|a+)%, P(b=-1) = [(b—|a+)?

i = —e VBT _1.22p2 , +1.3,3p3,  _ i cosyt —isinyt
e Consider H = iiyB. Then U(t,0) = ¢ I—iytB— 5 y*t°B* +i5y°t°B° + cos ytl zsmth—»(_l.Sinyt cosyt |

If we start with [1p(0)) = |a+), then [1p(t)) = cos yt|a+) —isin yt|a—) = \@(e—iw [b+) + et |b-)).
o (A)= (1p(t)|A|1/1(t)) = cos 2yt. The system oscillates between |a+) with a frequency 2y.

3. Propagator in the free space. (r,t) = (r|p(t)) = (r|U(t, 0)|(0)) = J(rlU(t, 0)|r’y (r’,0)d3r’
e U(r,1’;t,0) = (r|U(t,0)|r") is the probability of finding the particle at position r’ at time ¢, given that at t = 0 it was at r’.

(xlu(t,0)ir’) f<r|p> plU(t0)lp’)(p'It')d*pd? ’—f <r|p>< exp( > ;) ’>(p’|r’)d3pd3p’

. 2
R ipor\ (=ipPt\ o (=iplr\ 5, f —ip?t ip-(r-1)) 3 (" )3/2 imr—r'|
" (2n)? ] (55 e (2mh)b(p P)e"p( z )d PEP = (s ) P\ 2 T w )P ) P T o

e Suppose P(r,0) = (7{A2)_3/4exp( 2|A|2 ), then (r, t) = T(%(A2 + (ht/mA)z)‘% exp(—ﬁljmw)

— The narrower the initial wavepacket (in position space), the faster the subsequent spread.
4. Ehrenfest’s Thoerem: éit (Q)=5 LQ, H]>+< > For H = W +V(x), 4 30 = <m>, d(p)= < (x)>

dx

e Anything that commutes with the Hamlltoman is a constant of motion (a conserved quantity).

e Evenif [(Q, H] # 0, if the system is in an eigenstate of H, the expectation value of Q) will not change with time: (4)|[Q, H]|1,b) =
<¢|QE —EQ|¢> = 0 (eigenstates).

e If Ax and Ap are sufficiently small, the quantum motion will approximate the classical path.

5. Harmonic Oscillator

(1)H = % + maw?x?. Define x( = \/% 4= %(% +i%p), at = %(
o H =how(ait + 3 ) [H,4] = —hwa, [H,4"] = hwa.

e E, = (n|Hn) = hw(n|d+d+ 2|n> = haw (njataln) + lhw (an|dn) + lhw > lhw

e H(4|n)) = aH |n) — hwd|n) = (E, - hw)d|n) = a+|n)/u|n> is an elgenstate with energy E,+hw.

. H(d*)n [0) = hw(ﬁ+d+ )(ﬁ*)n |0) = ( i)hw( ) [0). E,=(n+ )hw N = a4t is the number operator.

—i%”ﬁ), (4,47 =1

ESIES

25
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sH\n
e Normalisation: d|n) = Vn|n—1), a*|n) = Vu+1|n+1). |n) = % |0).

o Bo(x) = (xI0), (x1al0) = 0 = (& +x0 8k )po(x) = 0 = po(x) = N2, (1) = (& —xo k)" ol
5.2 Angular momentum
5.2.1 General properties of angular momentum
(1) [J1,J2] = ikf3, [J2,J;] = 0. Denote the normalised states
2) W (A=) = (L2 -] T+ 13
3) Define J, = Jy +ify, J_ = fy ilo. (i, J-1 = 215, [, Ju] = 0., 1%, 12] = 0. 32 = (LS +J-Jo) +J5 = LuJx + J3 F 1.
4) J3 (74 1)) = L3l ) + A ey = B+ 1) (JlA, ) = (p£1)
)
)
)

A of j2 and eigenvalue fiy of f3.

—J3 -1
6 /l_ﬂmax(l"max"'l): 0, /\_Vmin(l’lmin"'l): 0, Hmax — Pmin =N, = Mmax = %
NP lmy =02+ )ljym),  Jsljym)y=mhljm), Jo=myj(j+1)-mmx1)|jmx1)

5) Suppose (A=p? =) =Cyy = hyJA—p? — .

(
(
(
(
(
(

5.2.2 Spin—% system
(1) Whereas with orbital angular momentum we were talking about an infinite-dimension space which could be considered
as a sum of subspaces with I =0,1,2,---, when we talk about intrinsic angular momentum, we are confined to a single

LAV |5 -5 = (l2+), 1))
Li)=0, $,=4(S.+5.) S, =-1i(S.-5.).

s S: 5[0 1 s Sz 40 —i s S 41 0
SX—>7(1 0), Sy—>7(1. 0), Sz—>7(0 _1).

subspace with fixed j(s). In the case s = é, m= _2, the space is 2D with bases denoted by {

i 0
0[01,02]=2i03, aiajzéijl+i25,~jkak, o =L
k

e a-o is Hermitian. (a-o)(b-o)=a-bl+i(axb)-o
e Together with the identity matrix, they form a bas1s (with real coefficients) for all Hermitian 2 x 2 matrices.

e The eigenvectors of a 07: [X+) = (|z Y+|Z+)) — %( ) -)= \%(li—) —|z+)) —» \_6(—11 )

cos®  sinBOe i cos eiv/2
e n = sin 6 cos pe, + sin @ sin e, + cosOe,. Then § -n —> Z o ; 2
Pex ey z 2\sinBe'?  —cosO

s Sz
) with eigenvector [n+) — ( sin 2eiv/2 |

. S,
gSVBS-B—>yBo'-B

(3) The Hamiltonian of a spin—— electron in a uniform magnet1c field H=-p-B =

e Assume |l,b( =|2+) = L(|x+) +|%-)), then )1/) (1)) = L (72 |%+) + /2 |g—)) = cos 4L La+) —sin Gt |2-), w = 2y = ZF;B.

o (1p(t)|§z|1p(t = 2coswt ((1) |Sy|1p (t)y=- s1nwt (1/) |S |1,b (t))=0. So <S> is a vector of length 2 5 in the pz plane which
rotates with frequency w = 2ugB/h.

5.2.3 Addition of angular momenta

(j=Lel+IeS=0L+S§, j?=L*@[+/®S$?+2L®S=1L2+8%+2L.S.

2) [L%];]1=0,[8%]i]= 0= (I,s,my,mg),mj =my+mg.  [j%,L;]#0,[J28;] = 0= (Ls,j,m)). |l m)®|s, ms) —
(3) The state of maximal m in a multiplet |j, j) is called the stretched state. Denote j, =1+s.

o ljs,js) = ILD®Is,s) = J_ljs, jo) = (L_IL 1) ®1s,8) + L 1Y ® (S_[5,5)) =/2s |jsr jo = 1) = V2I|L1 = 1) ®]s,s) + V25|, 1) ® s, 5 — 1).
After 2j. steps we will reach the bottom of the latter |j.,—js) = |I,—I) ®|s,—s). Whichever is the smaller of I or s will govern
the maximum number of {1, m} that can equal any m;.

lisrjo = 1) = L ILI=1)®ls,s) + /7 LD ®[s,5 - 1).

om1,jo—1) = —\/g|l,l—l)®|s,s)+\/1|l Dels,s—1).
e When we add angular momenta with quantum numbers / and s, the quantum number j that gives the magnitude of the
total runs in steps of one over the range || —s| <j <[ +s.
(4) An example for [ =2,s =1:
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13,3)=12,2)®[1,1)

B.2) =/ 22 D8I 1)+ T12,2)811,0), 2,2) ==y T2 DelL 1)+ 22.2)8IL0),

3 3 3 3

3,1)= 220 1,1 7821 1,0 2,1)= 120 1,1 121 1,0 1,1)= LZO 1,1 7321 1,0

B =y 22061+ =21 el0), 21 =308+t e, L1 =y 15208l -y S ) elL0

3,0) = 121 1,1 320 1,0 121 1,-1 2,0) = 121 1,1)+0|2,0 1,0 121 1,-1 1,0) = 7321 1,1 220 1,0 7321 1,-1

3.0 =y 52 Dol 1+ 220800+t Del-1) 2.0y =~/ 312-D@L 1) +02,0)811,0)+/ 3 2 D el 1) L0y = S ell -y 220010 Sk 1elt-1)
31_7122 1,1 —821 1,0 220 1,-1 2,-1)= 122 1,1 121 1,0 120 1,-1 11—322 1,1 7321 1,0 7120 1,-1
B-1) = 1522 1L 1+ DeIL0) +\ 220 8lL-1) 21z 3226l 12180+ 32061 L=y 2226l 22Dl fR0sl-1)
3,-2)= 122 1,0 221 1,-1 2,-2)= 222 1,0 121 1,-1

B.-2)= /222 elL0)+ |22 -Del-1), 2=/ 22 el0)+ T2 -Dell-1)

13,-3)=12,-2)®l1,-1)

e The coefficients (Clebsch-Gordan coefficients) are inner products (<l, s, my, mg|j, mj>)
(5) The general form: [[,M) =} (j1,my;j2, mol], M)|j1,m1)®ljo,mz), |j1,m1)®lj2,m2) :]%(jl'mﬁfz, my|J, M)|], M).
l?m]'Jr%

my,msy
1
T | +%>®|%,—%>i lizn;% %>®|%,%>-
o V211l @y22tl = W2 -2l @ W21+72)*1 In particular for s = 1: V2l @ V2 = V229 V2.
(6) Example: spin-1 particles. The basis are |1,1), |[1,0), |1,-1).
5.3 Approximation method — Variational method
5.3.1 Ground state

oFors_z,]_l+ |li mj>:

(1) Suppose we know the Hamiltonian of a bound system but don’t know the energy of the ground state: w2 Eo-

A " A \I’H\I’ n %En
o W)=Y c,|n), (WIHW) = ¥ e, (m|H|n) = Z|cn|2En, S = 73: |TC||2 > Eq.
n n,m nltn

(2) Example: Infinite square well with V |0< = 0. Trial function W(x

WA _ 1 (WP _ 1 (PYIPY) _ 1om2 101328
(VW) — 2m (V|V) — 2m (Y|¥V) ~ 2ma? —

e Use an adjustable parameter = W(x) = x(a — x) + bx? (a —x)2.

|0<x< = x(a—x).

=

5.3.2 Excited states
(1) <H> =) P,E,, where P, are the squares of the overlap between the trial function and the actual eigenstates of the system
n

= We can only find bounds on excited states if we can arrange for the overlap of the trial wave function with all lower states to
be zero.

e The lowest state with odd parity will automatically have zero overlap with the even-parity ground state.

(2) Example: For square well. Trial function W (x) = x(a — x)(2x — a).

5.4 Approximation method - WKB approximation

1) The one-dimensional TISE can be written as dz—Q = —k(x)%1(x), where k(x 2m(E — V(x))/h.
dx 17[)

e k(x) can be thought as a spatially-varying wavenumber if it doesn’t change too qulckly with posmon

. . . . A . (X , , . _ | K=
(2) An approximation for the wave function is (x) = Vo exp(izf k(x")dx ) provided |V (x)| = | | < 1.

(3) WKB approximation for bound states: In the classically allowed region the wave function will be oscillatory and can be

written as an equal superposition of right- and left-moving waves as 1(x) = W cos (J k(x")dx" + q[))

e For infinite well, the solution vanish at the boundaries (x f k(x)dx" = (n+1)m.

e For a general potential, outside the classically allowed region we have decaying exponentials. Lb k(x")dx’" = (n+ 3)m.
(4) Example:
(5) WKB for tunnelling:

Vv

. N E . - _ prefactor from ol 1 —
e For a square barrier J L , the tunnelling probability T = [reﬂection at the ends | <€ K= % 2m(V —E).

e Consider barrier that can be split into series of square ones, in each slice T o e >**N)AL  define decay length A = %, if

|V] < 1, then we can take AL > A but still small on scale of variation of V(x). = T = [prefactor] x exp( 2[ x)dx’ )
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Example Field emission. Metal surface (cathode) in an electric field can emit electron.

\/Zm dx—hjo \2m(® — Bx) dx_4\/2_mq)/2’ oce W,

Example: a decay. V(1) = lezaThc.

R R 1/2
W:2IRC%w/2m(VC(r)—E)dr:2 ZZ“ZC:ZEJRC(RTC—I) dr = Tocexp( N G).

Strong interaction
5.5 Approximation method — Time independent perturbation theory
5.5.1 Non-degenerate perturbation theory

(1) (H(O) +AH0 )|n> E, |n). Then substitue in E, = E i /\E /\ZELZ) +---and |n) = |n(0)) + A|n(1)) + A% [n(2)) +

A i) <8 )
e Match terms with A = A© |n(1)>+H(1) |n(0)> = |n >+ E, |n > (4.2)
AO )+ A |5 1) = E§10>| D)+ E >+E |nl® ) 43
. n 0| BOH7D) 4 <n(0) H(1)|n(0)> =Y 7l +E(1)<n(0)|n(0)> =>EY = <n(o))H(”|n(O)>
(2) Inner product with <n(0>| = { (O FLOH 7 (n(o) H(1)|n(1)> :W+ Egl (n(0)|n(1)> " En;) <n 0)|n(0)>
0

e Unperturbed states {|n(0)>} form a basis, write |n(1)> =) ¢ |m
m
+

e Inner product with <m(°)| form=n= <m(0)|H(O)|n(”>

:>E$)<m(0)|n(1)>+<m(0)|H(l)|n(0)>:ELO)<m(O)|n(1)>:><m(0)|n(l)>:(m(0)|H(”|”(0>:>|n(1)> A ) ),

0 0 0
E‘El )_EEII) m#n Er(l )_Em
OFD)[0)
. e . 2 A m "
e The undetermined (n(o)ln(1)> is imaginary and can be ignored = E\) = <n(0)|H(1)|n(1)> = w
m#+n E _Em

(2) Summary results:

|">=|ﬂ(0)>+zm|m >+ .., E,=EY ( dlit |n ZI >| .

= EV_g® = BV _g¥

) Perturbed harmonic oscillator: H(®) = 2p—m + 5 mcu:Z t2 with H) = 1£2. Unperturbed states |1(0)) with E(()O) =(n+ %)hw.
&= 2(a+d) = E) = (O] (ﬁ*) +a2+2ata+ 1‘n(0)> = A hw(n+1)

o=
.|n(l)>: Y MMI(O): (\/n+1(n+2 | > \/n(n-1) | _2 )>)

= E(0) E(O —2hw 2hw

(3

|< OA D] ‘
©)

= (3 ) (2 4522) = -4 () o+ 4)

o B = (nO|HO|nV) = ¥, O £0

o Define @' = wyf1+:2 = B, = (n+ 1)’ = (n+ )1+ 4 - 1(;4:) +.. )

5.5.2 Degenerate perturbation theory
(1) We need to find a new set of states in the degenerate space, linear combinations of our initial choice, which are not mixed

by the perturbation, i.e. <m’(0) H(l)'n’(0)> =0if Ei,?) = E,&O) for m # n. In the new basis H(!) is diagonal in the degenerate
subspace.

(2) Example: Suppose we have a three-state basis with degenerate energies:
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1 0 0 Eob 0 0 111
PN —l o | POY—[1 | BY—|o| AO—] 0 E o [ AY—af 1 1 1
0 0 1 0 0 2E 111

o B = (1O]AM]170

° <3'(0)‘[§(1) 170

1

1

1

) 2OIEOOY
1<0)>+< |7 >|2<0>>:_ga

. 1/(1)>:0’ 2/(1)>: 3“;!237‘_1!(;;(0’“ (0)>_ %|3(0)>_)__a((18)’ 3 )>_0 P 2/(0)>_)Eio((%))‘
A0\ 30| [0\ VOO0 (2707|304

e e =l = St

o3} = Wﬁﬂ |1f<o>>+<2“‘”|f?ﬁﬂ 20)) = L(|O) (110 4 2/<o>><2f<o>|)g<1>|3<o>: L (LOY(10)] + [20) (20711 [30),

= We could equally have used the un-diagonalised states.

5.5.3 The hydrogen atom

) 2

(1.1) Non-relativistic H atom: H(® = - I g2 _ ahc with eigenvalues E(O —-%, where Eg = 1a?mc? = Depend only on n.

m

(1.2) The wave function of the ground state g o e”"/% where a = Typlcal momentum py = amc <K mc.

n,l,], ]>

4 54 N

on- S o oo s oy S S L M ion ) — _
(2) Relativistic correction: Exg = \/m*c* + p*c® —mc” = 5 — =5 + -+ = perturbation Hyp = -5 = chz

(1.3) Full eigenstates are given by |n,1,m;) ® 7,m5> =|n,l, my, ms) or

L PR
(1) 2
- B 2 2)
<n ke T Y B R
in-orbit interaction ¢ = =—— S<L-8. 2L -§ = j> - L2 - §2 = States with definite j are not mixe .O..
(3) Spin-orbit i ion Hig) = 5440 .8.20.6 =j2-12-§2 =5 h definite j d by S.0
(0)]?
Ey
. ~(0) . ) 2 2
<n,l,],m]-|HSO n,l,],mj>_a " (2l+1_2j+1) (I#0)
(4) For I = 0, the Darwin term is the same as the expression above.
EO? 5 )
. 4(0) .y (0) | 4(0) . _ 2"
<n,l,],m]-‘HKE+HSO+HD n,l,],mj>_a . (E_2j+1)

o All of these effects are of the same order of magnitude (x2Ei,0).

(5) For atoms spin-orbit interaction lowers energy of smaller j. Ep, , —Epp, , =4.5% 10 eV~pugB=B~1T.

(6) The proton has a magnetic moment p, = gp%. This generates a magnetic coupling between p spin and e angular
momentum. The splittings ~ 7¢ ~ 1073 smaller than electronic S.0. = hyperfine structure.

(7) Lamb shift: A combined effect of virtual particles and the charge radius the proton.
e Breaks the degeneracy of 25% and Zp% by AE ~4.4x107% eV

(8) The weak-field Zeeman effect: H atom in an external field B = Be,, where B <« 1T. The fine structure effects will be stronger;
the basis is then {

nl,j, m]>} and states of the same j but different L and m; are degenerate.
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The perturbing Hamiltonian I—AII(ILIg = #(ﬁz + 2§z).
(1) kBB . Al
Enljm = £B < |L +$ |], > VBij+yBB<],mJ-|SZ|],m]->.
( mj|S. =) (89) _ (J=)(89) _ mn(Sg)y _ min3(j2-12+82)
I 0D T gE T GGEDRE T T j(j+1)R2
(1) (j+1)~I(I+1)+s(s+1)
nljm;

_MBBm (1+] 2j(j+1) ):gjl"lBBmf
e Each level splits into 2j + 1 sublevels with equal splittings AE](.I) =gjmupB.

],m]> =cosBOcosalS| =

—E

(9) The strong-field Zeeman effect: The spin-orbit effect is small compared to external field. States of definite j are effectively

degenerate but are mixed by Hm;g = M(L +28 ) = Use |n,1,m;, mg) basis = Enlmlm = pg(m; + 2my).

(10) The Stark effect: The energy shifts of hydrogen in a strong external electric field E = £e,. Fine structure and spin can be
ignored = The unperturbed eigenstates are represented by |n, [, m;).

e The perturbing Hamiltonian AN = |e|€2.  (n,1,my)2n,1,m;) = Jd3rz|1,bnlm[|2 = 0 = No first-order energy shift for the
ground state. Hydrogen atom in its ground state has no electric dipole moment.

e Second order shift in ground state energy

£ Z|<n,l m2[1,0,0) o [t 0| <n,1 0L 0.0 [t o>|2}
100 —
=1 E-E e\ -E =T B -E e\ - £
2
B < A S (1,0,00200,1,0 (,1,00211,0, 00+ Jd3k<1,o,0|z|k> (KJ211,0,0)
£0_ 0
2 1 n>1
£ 2
- L(1,0,0|2[Z|n,1,0)<n,1,0| + J-d3k|k)(k|]73|1,0,0>
(0) (0)
EY _ES 0
(e€)? 2 8, 12 %
= 1 , = — _
o poy L OOEIL000 = 2 (eE) on
2 1

(11) Stark effect for n = 2 level of H atom: 4 degenerate states |2,0,0), |2,1,0), |2,1,+1). (2,1,0]2|2,0,0) = —34a4 = 0.
e Use degenerate PT in the subspace |2,0,0) — ( ) and |2 1,0) — ( ) = diagonalize H!) — 3e€a0(1 0)

— Eigenvectors |2,+,0) — \/; il with energy shift Ei =F3efay
e Electric field polarizes I, inducing an EDM.



Chapter 6: PHYS40202 Advanced Quantum Mechanics

6.1 Symmetries

6.1.1 Symmetries in classical mechanics

(1) Translation in space. v'(t) = T,x(t) = r(t)—a. T,f (r) = f(T,r) = f(r—a). If f(r) = f(r’), it is translationally invariant.
e (r,p) » (r—a,p). The momentum is invariant under spatial translation. Newton’s 2nd law F = p is also invariant.

e The Hamiltonian for a single particle H = 5. + V(r) is trans. invariant only if V(r—a) = V(r).
2 2
e The Hamiltonian for a two-particle system H= % + 5—;1 + V(rq,1,) is trans. invariant if V(ry,rp) = V(r] —ry).
100 ay 100—!11 141 r—a;
010- 010- -
e Denote r = (ry,7,,73,1)7, then T, = [0 01 ] r = (0 01 _Zi](g) = (2_25) =r-a.
000 1 000 1 /\1 1

2) Translation in time. t’ = Ty t =t —tg, f(t') = T, f(t) = f(t —tg).
dp _ dpdr d_p/'

o (x(t),p(t)) — (x(t —to), p(f — fo)). Newton’s 2nd law is invariant < 37 = 35 G =
cos@ —sinf® 0
(3) Rotations in space. 1’ = Z]« Rij(P)rj. eg: Rio,0,6) = R.(0) = sig@ cog@ (1) .
e Newton’s second law has the same form in the unrotated and rotated time-independent frames.
(4) Parity. r — —1,p — —p. Pseudovectors L =r xp — L. Symmetry under the parity transformation implies that the theory
does not care whether the coordinate system is left- or right-handed.
(5) Time reversal. t — —t,p — —p.
(6) Relativistic transformations. Energy and momentum are not invariant under Lorentz transformations, but |PH|? is.

6.1.2 Symmetries in quantum mechanics

(1) Define a quantum active transformation Ts Y(r,t) = P(Sr,t) = (', t). Consider the matrix element
fdnp;(r, £)OP(x, 1) = Jdrtp;(Sr, BOP,(St, 1) = fdr(f"swn(r, 1) OTsy(r, ) = fdw;;(r, 01§ OTs ) u(x, 1)

e In the quantum passive view O — T;OTS. If the system is invariant under a particular symmetry then O = TgOTS.

(2) Momentum generator. Consider an Infinitesimal spatial translation (r) - T (r) = Pp(r—€) = P(r)—e-V-(r) = (r)— %s.
pyY(r)=>T. =1-ze-p.

o [ ari 0090 - fdrab;(r— e10pate=e)= [[aryi0pnte)+ 3 [ drgifn (410 - 0pi) bt

— The generator commutes with the observable O if the observable is compatible with the symmetry ([p;, O] = 0).

e The Hamiltonian H = > + V(1) is not in general translationally invariant.

(3) Hamiltonian generator. l,b(r, ) — T5t¢(r, t)=(r,t —ot) = P(r,t) - 6t%1j)(r, t)=(r, t)+ 6t%H1,b(r, t)= Hy, =1+ %6tI:I.
e For an observable to be time translation invariant it must satisfy [H, 0]=0

cosf -—sinf 0 1 -66 0 0 1 0
(4) Angular momentum generator. Consider R,(00) =|sinf cos@ O|=|[660 1 0[=I1-60l-1 0 0|=1-00S;.
0 0 1 0 0 1 0 0 O
P(r) — R,(560)i(r )—1/1(r—6653r) P(r) - 59531~ Vi(r). S3r-V=—iL, = R,(560) =+ £50L,. In general R(60) =1+ £56 - L.
(5) In the passive view, O — TO (f ) ( —%e-p)zé+%ziei[”i,é]. For t, T)#T, =t +e.

6.1.3 Unitary operators
(1) Any operator that satisfies UTU = UU" = [ is called unitary.

)= (|¥)-

(2) Symmetry transformation operators must be unitary 7171 = 1.
(3) Finite spatial/time/rotation translation operators: U, = e /®/", [J(t) = ¢~ H!/h [jg = £10-L/1,

(4) Parity operator ﬁzp(r, t) = i(-r,t). By evaluating matrix element, <¢ |P+A b

A

¥) = ~(@lilp) = PP = ¢, DYpP = —p.

o If the system is invariant under spatial inversion then [H, P] =

(5) Tlme reversal operator Tl,b( ): Y*(r,t). Consider (r,t) = U(t)(r,0) = e_th/hl/)(I' 0)= ¢*(r,t) = im/hl,b (r,0).
T] TYAT - T*TH = A* - H = Time reversal is only a symmetry of the system if the Hamiltonian is real.

T'[H
TfT ¢, TtpT = p.

31
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(6) Antiunitary operators satisfy O*O = I, but with OA = 1*O. Unitary operators satisfy 01 =20.
. P*ihéijﬁ =pt [fi,ﬁj]P = [ﬁ*ryﬁ P*ﬁjﬁ] = [, -p;] = ihdyj. Thino; T = T, p;| T = [T1# T, T1p; T] = [rl, p]] = —ihd;
7) 4 (1,[)|O|1,b) |1,b) If O has no explicit time dependence, then I (1,D|O|1,l)>

° If the observable O commutes w1th the Hamiltonian, its expectation value is conserved for any state [¢)).
e For time-independent Hamiltonians % (l,b|I:I|1,b> = 0 = Conservation of energy.

jt

e For translationally-invariant Hamiltonians [H,p] = 0 = Conservation of momentum.
(8) Finite rotation operator Uy = ¢!/ = ¢ (OxLutO Ly O:Lo)/h o i0 Li/giOyLy/hei0-Lh Define the rotation in Euler angles:

(i) rotate the system about the z—axis by y € [0, 27t], (ii) rotate the system about the x—axis by 8 € [0, 7], (iii) rotate the system
about the z—axis by a € [0, 27]. (r) = P(R, ()R (B)R,(Y)) = Ua,ﬁ’yl,b(r) = el 0L/ gipLa/hoiyLa/y (x),

(9) In the basis {|I, m)}. The matrix element

D,l%’m'(arﬂxy) — <l,m|Ua,ﬁ,V|l,m’) _ <l,m|€laL 2/t 1/3L /T 1;/L /h|l m') = eilam+ym’) {1, mlelﬁL /7’7|l m)y = eilam+ym’ drln o (ﬁ)

e The (21 + 1) x (21 + 1) matrix D'(a, 8, ¥) is known as the Wigner D-matrix. Its elements Dmlm,(a,/ﬂ, y) = eilam+ym’ )d,ln,m,([j’).

01 0 01 0 cos?(B/2) isin(ﬁ)fsinz(ﬁ/Z)
eForl=1,L,=Jl1 0 1] efb/M-exp|£l1 0 1f= fﬁsin(ﬁ) sl 5 sin(p)
01 0

—sin? (B/2) sm(ﬁ cosz(ﬁ/2)
6.2 Time dependent perturbation theory
6.2.1 Time dependent perturbation theory

(1) TDSE with perturbation it [(t)) = H[ip(t)) = (Ho + AV () )lip(t)). Write [()) = ¥ c,(t)e Ent/Mn).

V2
V2 010

- Z[zhdc" +Ecplt )] e EntMny = ¥ [E, + AV ()] e (e Ent/Mny = ¥ in 94 e Ent/My = XYV (t)c,,(t)e Ent M)
n n n

orthonormality d c
‘ m

=AL6(t)e it |V (£)|n), where @, = Z2=E2 Expand c, (£) = ey (£) + Ach (£) + A2l (£) + -

— ind [c;‘f 1)+ A (1) + A%m (f)+.. ] _AY [cﬁf)(t) e+ a2+ . ] eiomt (mlV (1)|ny = i \0(1) = 0.
= At first order in A ih%cﬁ)(t) = ZCLO)(t)ei“’"mt(le(t)ln) = ):cho) (to) e’ “mnt (m|V (t)|n).
n n
o Initial condition: [(p(ty)) = [i), cu(fo) = ci (to) = Sui = it el (£) = elmit (m|V ()]iy = e (1) = —4 jt; dt’eionit’ (m|V (t')|i).

= 19(0) ~ o+ (0] e By By(0) = (o)

.

Hy , <0 ()

_ it (0 t/7 iyt — i _ (Vi)
Hos Ve =g o (O = —g(lVID [ dee’eiont = —5migiss.

(2) Perturbation switched on slowly. Consider H = {

e lim C;l)(O) = <"|V|l> (compatible with time-independent perturbation theory).
T—00

(3) Perturbation sw1tched on and off. Consider H = Hy + Ve e
:c&ll)(oo):—%<n|\7|i>£>;dte_tz/rzeiw"itZ—%<1’1|V|1‘>€7“)£"/12/4\/ET. Pf(oo :‘C(fl)( ' _ |<f|V|Z>|2 (uf,”[ /2

e lim Pf(c0) — 0. The system initialised in an eigenstate of H = Hy at t = —co will remain in an instantaneous eigenstate of
T—00
H as the perturbation is slowly switched on and then off again (adiabatic).

° lin(l) P¢(c0) — 0. A sudden change to the system leaves its state unchanged.
T—>

L_¢=/%0_ At t =0 turn on E(t) = Ege /", Eg > 0,7 > 0.
0
e The perturbation V(t) = —d - E(t) = —(—e)zE, = er cos @Ege /7. Consider the final state n =2, = 1,m = 0.

(4) Hydrogen atom in an external field. In the ground state oo(7) =

- ot ~ P E _ ieEgA | eliw-1/7)t _1 215/2
o cM(t)=—4 fo dt'(#’zlo |V(f')| 1/)100>€"”t Ze 2 (Pa10lrcos 9|1P100>f0 dret/Telot = ~1202 [—e Y ],A =
e2E2A? _ _ e?E3A? . e2E2 A2
.P |C(1 | :m(l_’_e 2t/‘L'_2€ t/TCOSCl)t)- P(OO) m 111’1"([)P(00)—>0, -}L}II;OP(OO)—)hz—Z)Z

0, t<0

Voe_i“)t, t>0 '
2 «in2 /2
Y= P () = 4 A\ |4 sin ((cuf, )t B
l) i-i(1) = 32 < l> (i)’
e For w # wy;, the transition probability oscillates in time with a small amphtude

T = 2 |(£| Vo >' o(wpi~w).

(5) Oscillatory perturbations. Consider V(t) = {

— c‘f”(t) =~ [y drelent (£ (r)

<f|V0. >| 51nc2((a)f,~—w)t/2)

e For w = Wfi, Pi—>]( = 271t|<f|V0|l>| o( wfz -w) :>Rz—>f( )= dt
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X2
e Fermi’s Golden Rule: R;_,¢(t) = 27" <f |V0| 1>| 6(Efl- - ha)). In the long-time limit, only a perturbation with frequency that

matches the system transition frequency wy; can induce a transition from [i) to |j). Here the energy is absorbed from the
perturbing field and Ef > E;.

o If V(t) = Vye'®* then we have O(Ef; + hw). Energy is given up to the perturbing field in an emission process.

6.2.2 Selection rules
0, t<0
eEgcos(wt)e -t = eEO( it 4 e‘i‘"t)s £, t>0

e Consider a field with a range of frequencies each weighted by Ey,

(1) Emission and absorption of radiation. Consider V(t) =

Rif= %JJ; dwEy(w |(f|£ -£]i)? [6 a)fl—w)+6(wfl+w)] h2e E0(|wfl|) |<f|g-f'|l'>|2,

which applies both to absorption and stimulated emission.

(2) For electric dipole transitions to be allowed we require (f|e - i) # 0. For Hydrogen consider (n’, r,s,j, m]' le -f|n,1,s,j, mj>.

e Write f = \/47'(r(Y11e_ + Yloeo + Yf1e+), where e, = i\/g(ex + iey) =
6.3 Charged particles in electromagnetic fields

6.3.1 Hamiltonian of charged particles in electromagnetic fields

(1) Lagrangian for a charged Paaf;cle in the EM field: & = 1mi? — q®(r, 1) + gA(r, t) - 1 = mi = q[E(r,t) + i x B(r, 1)].

(2) Canonical momentum p; = ¥ mr; + qA;(r,t), p = mi + qA(r, t). Kinetic momentum mi = p — qA(r, t).
(3) Classical Hamiltonian: H Lm( qA(r, if))2 +qP(r,t). Quantum Hamiltonian A= ﬁ(p —qA(t, t‘))2 +qD(t, ).
(4) In the case O(t,t) = = %( (A )2. [H, p;] isn’t necessarily 0. For kinetic momentum [mf,H] =0 (conserved).

6.3.2 Gauge transformations and gauge invariance
(1) Gauge transformation O(r,t) — D) (r,t) = D(r, t) - a’\;:’t), A(r,t) > A (r,t) = A(r, 1) + VA(r, 1)
(2) Hamiltonian under gauge transformation H — H, = Zlm [P —q(A(E 1)+ VA(#,1)]* + (@(1", t)— 8/\3(?” )

(3) Define unitary operator G, = et/ G/\pGJr =p—qVA(r,1).

Grih 2y = G HIp) = GLHGE G l) P A
aAA oY ig 3/{\ v) =G E e =>[ ihg +q 2 ]GA|¢>=GAHG}GA|¢>-
56y =3 GA|¢>+GA—|IP>

G HG! = LG, [p-qA(rt ]G*GA[p—qA 1,1)|Gh +q®(r, 1) = 2= [p— q(A(r, 1) + VA(r, 1))]* + g®O(r, t). Define [1hy) = G,|ih).

= ihZ[p2) = Falr), By = 251D — q(A(r, 1) + VA(r, )] + (®(r, 1) - 247 >)=ﬁ[p—qAA<r) B +q0, (£ 1).

o If [{) satisfies the TDSE in the original gauge, then the unitarily transformed |, ) satisfies the TDSE in the new gauge.
(5) The expectation value of any observable O will be unchanged provided we transform both the observable and the state
@I0lp) = (|GLG1OG! Ga| ) = (92|04 1), where O, = G, 06!,

e Any operator for which O, = O is termed gauge invariant. Their expectation values are the same for [1) and |1, ).

e GGl =1, GipGl =p—qVA(r,t). GymiGl = p—qVA(E, 1) - qA(E,t) = p — qAL (£, 1).

e mi represents the mechanical momentum in any gauge, though its operator representation changes in different gauges.
The canonical momentum p has the same operator representation in all gauges, it does not represent the same physical
observable in all gauges. Position and mechanical momentum are considered true physical quantities.

e For a true physical quantity the direct gauge transformation of the potentials along with the transformation G, of the state

will leave expectation values invariant. (P|E[) — (P, [E|y) = <¢ |GAf\fCA| 1,b> = (P|t|) (Also (1,l)|p —qA(t, t)'ll))).

(4) Time-independent Hamiltonian. By treating the EM field as external (time-dependent) we are approximating their influ-
ence on our system. If we were to include the dynamical variables of the field our Hamiltonian would be time independent.
o Hy = GA\HG]. TISE Hlp) = Elp) = GAHIp) = GAElp) = Hlpa) = Ely).

(4) Consider {

6.3.3 Dipole interactions and Goppert-Mayer transformation

(1) Consider a field which has zero scalar potential E(t,t) = aA( . For a particle of charge g at the origin 0, in the long-
wavelength limit E(0,t) = dAd?t and B(#,t) = Vx A(0,t) = 0.

commutes with any gauge transformations.

dA(0,1)

(2) In the electric dipole approximation H = m[p —gA(0,1))? + V(t), where V(£)
() +gt-—5— = p 24+ V(#)-d-E(0,¢).

(3) Chose A(t, 1) = —£-A(0,t). Gy = e AEI/N = o~1abAON/N = [, = L2y
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6.3.4 Landau levels
(1) Consider a particle of charge q in the homogeneous magnetic field B = (0,0, B), choose A = (0, Bx, 0).

—> The Hamiltonian H = 2m (p- qA) 5 [Px (ﬁy - qu)z + ﬁg]

e The z—component is decouzpled from the xy—motion and [p,, H] = 0 = (x,v,2) = (x, p)e'%2,

= H,, = ﬁ[ﬁf + (ﬁ; - qu) ] = ﬁ[ﬁf + ﬁ; + q232 2_ 2quﬁy]. d= ﬁ [ﬁ% + hzk}% + q232 Z_ ZLIBhkyX] gbky(x) = Exy’ybky(x) =
fik, \2

p + qZBZ (X— _é’) :|11bk (x) = Exyll)ky(X).

- hk
1 A
[zmp;zc+ mwc X —Xxg) ]lPk Ezpk (x), where xg = qB’wC

L
2m

=2 =y (x) = Dy (x = Xo), P(x,9) = Dy (x = x0)e™7.

e Energy eigenvalues E nk, = hwc(n +5 ) The set of degenerate states for a fixed value of n is called a Landau level.
(2) For B = (o 0, B) choose A=(- yB Bx,0) instead = VA = —(yB, Bx,0) = A = —Bxy. G, = e 115%/%,

= [zlmﬁf + My (y+y0 2]1,Dk = Eyy (), where o = hk = P(xy) = eikX"CDn(eryo), Eyx, = hwc(n+ %)

(3) For A = (0, Bx, 0), the eigenstates (x,,2) = ¢y, e’kyyelk 2 =@, (x — xp)e’¥Yeik:z = NH,,(x — xq)e~1B(x—%0)*/2hgiky3 pik.z

R hk, \? 2
Eﬁ[p%+q232(x—q—g) +h2k§]¢ky( )= Ed (%), Eng, = hoe(n+ )+ 5.

(4) Choose a finite region with length Lx,L in the xy—plane and set the b . P(xy,2)=p(xy+ Ly,z).

_ _ qBx qBLX qBL /h qBL L, gBA
° kyLy = 27'cny,ky =5-=>0< k < . Number of available states N = 2n dk = = o
e For L,L, = lcm? and B~ 0.1 T. Number of degenerate states N ~ 100 per Landau level
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7.1 The Standard Model and relativistic kinematics

Particle Mass  Electric Charge Weak Isospin  Colour charge
u 2.2 MeV +2/3 +1/2 r,b,g
d 4.7 MeV -1/3 -12 rbg
c 1.3 GeV +2/3 +1/2 rbg
s 96 MeV -1/3 -1/2 r,bg
(1) t 172 GeV +2/3 +1/2 r,bg
b 4 GeV -1/3 -1/2 rbg
Ve — 0 +1/2 no
e 511 keV -1 —-1/2 no
Vi — 0 +1/2 no
i 105 MeV -1 =1/2 no
Ve — 0 +1/2 no
T 1.78 GeV -1 -1/2 no
Interaction Mediators Mass Relative strength Long-distance behaviour Range(m)  Lifetime(s)
(2) Strong g(8) massless 1038 1 10715 107221072
Electromagnetic y massless 1036 1?2 00 10716 -10721

W, W- 80 GeV

Weak z 90 GeV

1025 Lo=mw,zr 10718 107-10713

e Leptons and quarks are spin—% fermions. Force-mediating particles are spin-1 bosons. The Higgs is spin-0 (125 GeV).

(3) Natural units: h=c=1. E = ymc? = ym.

e All units are powers of energy. Energy, momentum and mass are measured in eV. Length and time are measured in eV~!.
1eV=1.6x10""]. #=6.58x10"%2 MeVs, hic =1.97x107!3 MeVm.

(4) P¥ = (E,p) = (E, px, Py, Pz)- The invariant mass is given by M? = |PF|* = E? - p2 —p}% -p2.

e For a single particle, the invariant mass is simply the mass of the particle.

2 2
. Iz Noow 2 no|2 N N N

e For a system of N particles, P, = ZOP] . M* = Ptot| = %E - %px’j - 'Zopy'j
1= 1= 1= 1=

momentum must be conserved, the invariant mass must also be conserved.

2 (N 2
- [ ) pz,j] . As energy and
j=0

N
(5) In the centre-of-mass frame, ) p; = 0. EZ2, = M>.
j=0
e Example: Threshold production. The minimum beam energy for the protons for the process pp — pppp.
Fixed-target: Minimum energy needed if final state particles have 0 momentum. In the c.o.m. frame, Pt’:)t,cm = (4m,,0),
M? = (4mp)2. In the lab frame, Pfeam = (Ep, pp), Pt’;rget = (my,0), Pt}:)t,lab = (Ep + myp, pp)- M? = (E, + mp)2 —pf = E, = 7my,.
e Assume Ej, > my, M? = EZ +2Eym, +%— EZ = 2Eym, = Ecy o 2Epm,,. If we want to double E., need 4 x Ej,.
o Collision. P{ = (Ey, pp), Py = (Ep,—py)- M? = (2E)* — 0% = 4E2. If we want to double E, need 2 x Ej,.
e Heavy particle decays. Example: X — AB, E4 = Eg = 88.39 GeV, p4 and pp are measured to be 88.39 GeV along the

2
x/z-direction = m} = (2 x 88.39)% — (V2 x 88.39)" = mx = 125 GeV.

(6) Particle decay widths: N(t) = Noe "%, AEAt ~1 = AE = Am ~ % =T. The mass of the particle produced in decays will not
have a well-defined mass, but have an uncertainty associated.

q K

(7) Bump-hunting example: pp — p*pu~. Bumps: resonance decay. >\,%,\< ,

q I

35
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(8) Relativistic wave equation (the Klein-Gordon equation): E* = p~+m® ——— E“p = p P+ m“p = —75 = -V + my.

e Solutions: (x, t) = Ne*(E*"PX)_The solution have positive and negative energy eigenvalues.

7.2 Interaction vertices " "

inematic properties of a virtual process A > A"+ X: . Consider the rest frame of the initial state,
1)K tic propert f tual p A—->A+X Consider th tf f the initial stat

Py = (my,0), P}, = (w/p} + mi,pf)+ (\/p} + mi,—pf)- X

my =0:if pr <my — AE =py, ifpr>my > AE=2
OAEZZEf—):E,-z\/p}+mi+\/p%+m§(—mA. X Py=T1a Pf Py =>ma pf

my #0:if pr <my,my - AE=my, if pf>my,my - AE =2ps
e Define the process as a virtual process as the energy is not conserved during this interaction and the relationship E2~p? = m?
cannot hold for at least one of the particles. A particle that has E? — p? = m? is a virtual particle.

(2) Real processes have to contain at least two interactions. Consider AB — A’B’ via the exchange of X.

o KG equation in the static state: V2¢ = m%¢. For point-like particles we can rewrite it as %dd’—,z(r(p) =m%¢.

2 — M . . . . 2 . . . .
e The solution ¢(r) = -4 ;XV is called the Yukawa potential. The normalisation constant 4 is related to the intrinsic
strength of the interaction.

e For massless particle exchange, ¢(r) « % For massive particle, ¢ oc e"x". R = -1 is defined as the range of the force.

my
X
(3) Interactions in Feynman diagrams are represented by interaction vertices. eg: gx Each interaction occurs
2
with a coupling strength gx. Define the dimensionless coupling ay = %. f by

L,, muon number L”, tau number L., baryon number B.
e Example: Searches for BNV and LNV: 1~ — pe*e™, where 7 is produced from e"e* — v t*.

(5) The scattering amplitude My; is the probability amplitude for a scattering process, which can be calculated using Feyn-
man diagrams. It is proportional to the product of coupling strengths defined by each interaction vertex. Mg; oc[]g;.
i

e Consider the scattering of a particle from a static potential: My; = fd3r1,b}(r)V(r)1,b,-(r). Assume (r) = e'PT,

: 2 mygr 2
= My; = fd3re’q"V(r), where q = p; — py. For the Yukawa potential, V(r) = -£ X, My = _Iqlzgv' The relativistic
X
i & —pt_pt

result is My; = P q" =P Pf‘
2

e For |¢gM"]> < m% (non-relativistic), Mg = —fl—z = const. The probability amplitude is suppressed by the mass of the particle
X

mediating the interaction = The weak force is so much weaker than the EM force at low energies.

2
e For |q”|2 > m%, Myi = _|§7' The mass of the mediating particle becomes irrelevant = The weak force and the EM force

becomes approximately equal in strength at very high energies.

e My; is largest for lg"|?> ~ mf( = The virtual mediating particle are preferentially produced with an invariant mass that is
close to the true mass of the particle.

(6) The cross section ¢ is a measure of the probability of a specific interaction. The units for cross sections are barns (b).
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® 0 x (Mfi) . The number of events in a collider experiment N = oL, where L is the integrated luminosity. The integrated
luminosity is a measure of the size of a dataset, i.e. how many interactions have occurred in a given timeframe.

e” Zz
(7) Search for Higgs at LEP: e*e™ — ZH, Z MmN = my +my =216 GeV > ELEP = 209 GeV (1995).
et H
-1
(8) Search of Higgs at LHC: H —» ZZ* — 4l. oy ~ 55 pb = Ny L9 7 6% 106, Events observed N = 220. Factors: (i)
Branching ratio BR(H — 4l) = 1.29 x 1074, (ii) Detector efficiency.
(9) Range of the strong force. R ~ 1fm = 5.08 GeV~! = my = 197 MeV. Yukawa: 15 P Modern explanation:
exchange of d between p and n. ——n
7.3 Basics of the EM and strong interaction
f wWrowe
(1) Between fermions and photons: 7 Zem - Between W-bosons and photons: 1+ Migx , },{‘:

Y

(2) The EM interaction strength ge, = q5. The fine structure constant aep, = W [SI]/ £ H [natural].

(3) Due to quantum fluctuations, the value of the coupling strength depends on the distance/momentum scale. Quantum
fluctuations are the continuous emission and absorption of virtual particles from a real particle. Thus a real electron in a
free space is surrounded by a plethora of virtual particles = vacuum polarisation = The electron charge is screened.

e e = 11? is valid only at r — 0. a,,, increases as r decreases.

off = where Q2 is the squared four momentum of the particle mediating the interaction (virtuality). Small r is

ol
(Qz)

equlvalent to large Q2.
(4) Allowed vertices for QCD: ¢ _{Zy{, u J %u, }{

(5) Quarks carry r, g, b, antiquarks carry 7, 7,b. Gluons carry rg, rb, b7, b3, b, % rF—00d), \/_(rr + 00— ZbE),Wj,

e Each color charge can be written as ¥, = (é), W, = ((1)), W, = ((1)) in the colour space. The strong interaction can be thought

e O,

as a rotation in the color space and gluons can be represented by the 3 x 3 rotation matrices (Gellman matrices).

(6) The dimensionless coupling for the strong interaction a; = % > Qem-

e Effective QCD coupling strength is a balance between screening and antiscreening ag(Q?) = 7(33 21\1]2)’: (Qz ) Nf=6is
~2Np)In( %

the number of colour-carrying fermions in the theory, Q? the four-momentum of the virtual gluon. That 33 > N r leads to

antiscreening wins and @, decreases with increasing Q2.

e Asymptotic freedom: At small r, @ — 0.1, the potential V(r) ~ <.

e Colour confinement: At large r, as rapidly increases. The potential V(r) ~ r and eventually becomes large enough such that

it is energetically favourable to create a quark-antiquark pair. Thus a bare-quark cannot be observed freely in nature.

e 12 e Uy
(7) Examples: ete” — ptp: >\,7:,\< ,ete” —qg: >\,7:,\< Y Q;=0,L= L{ =0, L;'A = Lﬁ =0
i
et i et u,
- - 2 QFT  47a2 2
ecte >t Myjoce®. Opre Ly |Mf,~‘ =k(e?)? =kal, =— T=, g—gzaf;“(1+c0526).
ecte” — 99: Mfl Z 2. Octe~—u,1i, k4 ezm) Octe~—un = 3k4 esz Oete—qq = SkaeszQ]%-

e R = giﬁ_"’;fq =3Y Q? 2 R (i) can be used to confirm the number of colour states for quarks, (ii) or the number of active
ete —)}l }l

quarks that can be produced at a given s. (iii) R will change w.r.t. /s as more quark species become active.
gluon bkg: the net color of the lead ion remains neutral.

et ——r Y ot —er Y
(8) Example: e*e” — 2y 1 , A~ Y - Oy & |Mfl| < kyal,, Tyyy ksad.,

A
e —a>— o~ Y e —»—I Y

o 2
_rr. Aem

= ~ S~ 137.
vy dem
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(9) Light-by-light scattering: v A My et Oyysyy X al. . Sources: N , N

T i Bt

M?’j «el, o =kal,,. M?E’Pb o Z2e% 0 =kZ*al,,. % ~Z%=45%x107. N,gzl’b = "g;;’b Lf;;’b ~ 1.3 (ATLAS 2018).
e Benefits of PbPb: We can keep a larger fraction of events in PbPb collisions because we’re producing less events per second

in the same disk size. Every time we read out the detector, we typically only have one PbPb interaction while in pp collisions
we have 60 pp interactions read out.

" Pb Pb Background: yy — e*e”, gg — yy. Mistag rate: The detector is
e Backgrounds: , not perfect, the track of the electron is somehow not seen in the
- traclfer '(1?/02)- 0yy—ee & 100000y,),,,,. The relative rate at the
> Pb Pb end is similar between the two processes.

e Significance: After applying all selection criteria, 59 candidate events are observed for a background expectation of 12 +3
events = Excess of events over bkg (Size of sig. events S): 59-12=47. Expected bkg (null hypothesis): 12. Uncertainty in

’d
o

Y
=
Y

expectation: V12 (stat.), 3 (syst.) = Significance (f—B = \/;ZT ~

14 w*t y w+
(10) yy » WHW—: :gj:: ::3{ . Experimental considerations: (i) ion-ion interactions disflavored for
Y w- 7 W-

photon fusion if m,,,, ~ 200 GeV. High momentum photon have shorter wavelength and it starts to resolve the structure of
the ion. (ii) Effective detector acceptance similar in both pp and PbPb.

q ——T7~r W+
e Signal: Number of additional charge particles produced in that pp collision is zero. Background: )\ Since

q ——I~~ W™
a colour charge is taken outside the proton, the proton will break up and lots of hadronisation will occur. But there’s a
fraction of events where no charged particles is produced.

(11) yy » ZZ: LA . Background: 1 . BSM possibilities: ::} X _< (If you have some-
thing that interact with a photon, you kind of expect that thing to be interacting with Z bosons as well) .

7.4 Hadron collisions and jets

(1) The proton is made up of uud, which we refer to as valence quarks.

e The valence quarks are bound inside the proton by the strong force and therefore constantly interacting with each other
via the exchange of virtual gluons. The virtual gluons can split into a virtual quark-antiquark pair or a gluon pair. We refer
the virtual quarks and antiquarks. as sea quarks.

e Inside the proton there’s a constant changing of color states of each of the quark but it’s always in being color neutral.

(2) Hadron-hadron collision cross section:
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. f,-/p(x, QZ) is the partonic distribution function (PDF) which specify the probability of getting a parton of flavour i out of

a proton such that the parton carries a fraction x of the proton momentum. Q? is the four-momentum scale at which the
scattering process occurs.

¢ ¢ The PDFs are measured in processes such as deep inelastic scattering (DIS) at the HERA experiment.
. Consider the DIS process e"p — e~ X. In this process, Q% = —|g¥|*, where g/ is the four-momentum
y 4 of the virtual photon. In DIS, x = 2(131?—4“@' where p¥ = (E,, p) is the four momentum of the proton
akp
p beam. The results demonstrate that valence quarks have a peak at x ~ 0.1 -0.2.
u

e The PDF of valence quarks have a peak slightly below a momentum fraction of % At low momentum fraction there is a
large contribution from additional virtual particles.

(3) If a process (eg: uil — dd) can proceed via the strong or EM interactions, then the strong interaction will dominate.
0~ ka2, oo ~ kad(2) (3)". 2 = 85 ~ 500,

e For each initial state color configuration, there are 3 final states for y — dd and 1 final state for g — dd.

(4) The dominant parton scattering processes at hadron colliders are 2 — N strong interaction processes, where two initial
state partons scatter into N final state partons.

_ _ c K
e The ﬁnal state partons carry color charge and will eventually form ]ets of color neutral hadrons % ~ as,.

W e

§ —— o W . Z/y* W w ¢ X w
e Electroweak WW W production. ‘LN\, W ;) et H \‘{\\: , U4 W
_ Y 7 w W
W +
e

q—d—f\/\/\,W

(5) Multiple parton scattering: (i) Double-parton scattering will occur in 4—jet production as background via two pp — jj. (ii)
Multiple soft partonic scattering (at low momentum) (eg: gg — q4) will accompany any hard scatter (eg: g4 — Z).

g(E, k)

(6) Jet formation: Consider the processs ¢ — qg: . Prob = ZaSCF dE da

will diverge if E - 0, 06 — 0 = Lots

of soft (low-energy) or collinear (small angle) emissions = parton shower (a stream of collinear hadrons).
e At the end of the parton shower, the partons are bound inside hadrons in process referred to as hadronisation.
e At large multiplicity, (energy) of partons decreases. Eventually a,(Q?) is large enough to form hadrons.



40 CHAPTER 7. PHYS40222 PARTICLE PHYSICS

j2] T T T T T T 3 E T T T T T T =
Fameeey o] £400 5> F B
07 ALEPH §'°F ATLAS . Data 1 © q0tLATLAS i ¢ Data =
4‘771{;0( w1 m10°E 0 " +4 E Vs=13TeV, 36.1 b 1 Multijet E
106 E Vs=13TeV, 139 fb —— Background fit = - F Boosted Signal Region, 2-tag Uil -
107 i — BumpHunterinterval 4 S 10% & /i -
i Inclusive i ER= 0°E Scalar (2 TeV) 3
L *,m_ =4Te - E  * T, 7T L 3
10° > M E F - Gy (2 TeV KMy=1)x 30 ]
- <F g, m._ =6TeV 1 2 102 e RO
= 107 q | Cc E Stat+Syst Uncertainties 5
H 10| q*, ox10 S q>_) = E
© E g L _
3 a3 p-value = 0.89 4w 10g B
10 1 1
10E 4 E £
E \E| 40 =2k
= t 107"k 4 \
107k ~ E 4
g b t f f i t t E g 1.5¢ | I
— é OE X 1' fe,e ¥ .1 |
2 T O(e?) + NLLA E o @ t J T I
10 F - ) = o =~ i |
pe 1 L | L 1 L @ s © 0.5
0.6 065 07 075 08 085 09 095 ;1 = 0 0.5 1 1.5 2 25
(m]

hadrons
(7) Each of the partons carries a fraction of the initial quark energy — Parton-hadron duality: )} p; ~ pguark in jet formation.
i

e Example: In e*e” collisions, the measurement of 2j events tells us that the scattering process was e*e~ — g4. The mea-
surement of the differential cross section as a function of jet angle in COM frame proves that quarks are spin—% particles.

(gg is dependent on the particle spm)

e The measurement of 3j events tells us the process was e*e™ — ggg. a oo ON(TT T T '?
03 AN 1-X,>01
This proves the existence of the gluon. In the™ 5
- q (b) frame (beam coming into page, products la- \
y belled according to energy) the Ellis-Karliner an- ’
>~V\<LQA g - gle 6 is used to prove that gluons are spin—1 par-
. _ ticles (solid/dashed line for spin—1/0). %j’” =
e
(1 + %)
8 8
(9) Classify g and g _, gfi’ using event-shape observables (eg: thrust) and jet algorithms.
q

q

e Thrust T = max( L |p|’ | ) where the summation runs over all hadrons and nr is the thrust axis defined to maximise T.
1

Pencil-like events have T — 1, Mercedes-like events have T — % This is useful for understanding
QCD-induced effects but not useful for bump-hunting decays of heavy particles (eg: Z/H — bb).

. . . Pl = (x,Ep,0,0,x,Ep) ,4 )
(10) Kinematic properties: In the COM frame, | , =m?, = (P +P; ) = X4X3E&n, Ecm = 2Ep.

Pl = (x;E},0,0,-x;Ep) 4
e Momentum fractions carried by the two colliding partons are typically small (PDF) = small invariant mass. Com-

pounded by propagator effeects My; o W — A falling distribution.
X

e No evidence for new hypothetical particles with mass 4/6 TeV (virtual resonance particles)
(11) Jet algorithm: particles clustered into jets if they are nearby using a predefined distance parameter and can be used for
both QCD and bump-hunting (We want to work with 2/3 jets instead of 40 hadrons).
Iterative method: (1) start with high—prparticle and call this a pseudo—jet (2 ) Add 4-momentum of nearby particle to the pseudo-
jet if the distance between particle and pseudo-jet is small, i.e. if AR =(n; - —(¢i— d)]‘)2 < R%. (3) Recalculate the pseudo-jet

4-momentum. (4) Repeat steps 1-3 until all particles are merged into jets. Key feature is the distance measure. There are many
variations for deciding that based on angular distance or relative momentum.

(12) The Lund Plane: Run jet-finding algorithms backwards, identify the hadrons that are
being merged into a jet and test if the probability follows the theory. P(E,8) can be rep-
resented by Lund Plane variables AR = angle between subjets and Z = Egypjet/Ejer- Large
In(R/AR) stands for collinear and large In(1/Z) stands for soft emission.

005 1 15 2 25 3 35 4

In(R/AR)

3
In(RIAR)

( din(1/2) din(R/AR)

(1N ) Norigsons
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(13) Hadronically decaying boson produced at threshold (Higgs will be at rest, H G I{/ b
2 back-to back jets). Hadronically decaying boson produced at high momentum -- ’ :

(BSM), requires jet substructure analysis.

e Resolved boson decays: mg 2 2my, 4 jet analysis >< Bossted boson decays: mg > mpy, 2 jet + substructure /

V. Symmetries, conservation laws and hadron structure

(1) Noether’s theorem: There is a conserved quantity is the equations of motion are symmetric under a given transformation.
In quantum mechanics, operators that commute with the Hamiltonian are conserved quantities.

(2) Translational symmetry. Equation of motion 1p’(x) = Hz,b(x). Translation operator D(x) = Y(x + dx). DFIz,b(x) = Dl//(x) =
P’ (x+dx) = Hl,b(x+dx) HDy(x) = [D,H] =

e Y(x+dx)=1(x )+ = Ydx = Y(x)+idxpy(x) = D=1+ idxp = [ﬁ,FI] = 0 = conservation of linear momentum.

(3) Rotation in space. Total angular momentum | = L.+ S, J2i(x) = j(j + 1)p(x), [,p(x) = m;p(x). [J,H]=0,[J,,H]=0

e Composite systems: the spin of the bound system Sg = J.onstituents-

(4) Parity. x LA P,(x) = B,b(x), P, = 1. [P, H] = 0 for strong and EM interactions.
N

e Dirac eq. = PyPy = —1. Convention: Py = +1, P; = —1. Maxwell’s equations = P, = —1. Bound system Py = (]_[P,-)(—I)L.
i

e Parity of mesons P = P,P;(—1)! = (~1)}*1. Parity of baryons P = P,P,P.(-1)! = (-1).. L=0= P =1 for baryons.

(5) Charge conjugation: Cl,l)a(x) = tz(x). For y,my, Cl,ba( ) = Cah,(x), C, = 1. [C,H] = 0 for strong and EM interactions.

e Maxwell’s equations = C,, = -1. Cl,bff-(x) =Crrppsr(x), Crp=(-1 )L+S

(6) Hadrons. Mesons: qq4. Baryons qqq. Anti-baryons: q4q. Hadrons are color singlet objects.

e Charge Qnadron = )_q;- Baryon number B = %[Nq — Ng|. Strangeness: S = —[Ng — Ns|. Charmness: C = [N; — N¢|. Bottomness:
1

B =—[N - Nj]. Topness: T = [N, — Nj].

(7) Spin of hadrons Spadron = Jeonstituents = (L +S)constituents- Lhe lowest energy states have L = 0.

e Allowed values of S onstituents: S1 + 52,51+ S, —1,-++,|S; = S,|. Allowed valuesof J: L+S,L+S—-1,---,|[L-S]|.
(8) Spins of mesons Sy; =S, +S; = §=0,1.

e If L =0, then ] =0,1 = two states >**!L; =15, and 5.

eIf L=1,thenJ=1[S=0],] =2,1,0[S = 1] = four states ! P;,3P,,3P;,*P,.

Quantum number Photon Bound state
N
Parity Relativity = PfPf =-1, P =1, Pf =-1 P, =-1 Pg = (ﬂl’i)(—l)L
i
Charge conjugation No distinct antiparticle: C = +1. C,=-1 ff =(-1)*S, Cp = (]_[C )( 1)E+S
Spin integer/half-integer for bosons/fermions S, =+1 Shadron = Jeonst. = (L +S)const.
(10) Exotic Hadrons: Tetraquarks: q4qq and pentaquarks qqq44.
e Pentaquark search at LHCb. Consider Ag —J/P+p+K7, Ag =udb, K~ =si1, ]/ = cc. ¢ ¢ s u
Standard decays: A0 — A*J/¢, A* — pK™ = Expect peak in the mg, spectrum. The b W~/s / "
Dalitz plot 1nd1cates there are particles produced that decays to J/ ll)p The Pentaquark . u
explanation: A) — K~PF, P} — J/ip. p . 4
The P state consists of uudcc. (B, Q,S,C,E) =(1,1,0,0,0) (same as pro- E
ton). Ideal exotic has quantum numbers that are not possible for baryons ) < f—— ¢
and mesons. eg: cccc§ with (B, Q,S,C,E) =(1,7/5,1,4,0). Alternative ex- w b c—— ¢
planation for uudcé: ¥f (udc)+ D (u¢) = particles need to not be decaying z ” N ” Z Z T
> —_

quickly for the bound state to form. £} + D’ is feasible since they are both d
narrow resonances (small width).
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—0 -
ziD ziD*°
26 [ : :
- 102 1200 -
— _ | — data
> > - — total fit
()] - :
= 8 = 1000 background
w S ;
<
& S & 800f
L 22 c 3 [
[} - X B .
(O) = 0 c
I_A i ‘C_> 8 600 N
s | ; O [
S 20 i % g M ; ‘ ‘ w
i g g ‘% - 5 P_(4440)" | P, (4457)"
- g = - P (4312  °© ¢
18" S 200 [~ ;
N © A
L B fre= - O 5 A\
ST} I I I I I il I I B 1 0 ] = == —~ = J
2 25 3 35 4 45 5 55 6 6.5 4200 4250 4300 4350 4400 4450 4500 4550 4600

mip [Gev2] mJ/\yp [MeV]

e 2-body threshold: energy needed to produce XD and the binding energy of the molecule system. For a strongly bound
system like pentaquark system more of the mass will be used up and will be far away from the 2-body threshold.

VI. Hadron spectroscopy
(1) Consider a family of particles with same B,S,C,B and J*. Each particle in the family has the same Hypercharge Y =
B+ S + C + B. Define the third component of isospin I3 = Q — % and Isospin I = (I3) 5 in family-
o Isospin multiplet: family of particles with same B, S, C, B (same hypercharge Y) and J* but different Q (= different I3).
e Isospin is a symmetry related to up and down quarks. Antiquarks have opposite I3 to quarks.
e Quark-based I3 definition: I3 = %[(Nu —N;) - (Ng—Nj)]. Addition of isospin: I = 1,+I; has allowed values I,+1I}, -, |[I, — I|.
L=I5+15.
(2) Supermultiplets: particles with same B and J¥. Consider light hadrons with C = B=0(u,d,s)and L=0,Y =B+S.
— Particles can be described in Y —I5 plane.
(3) Ground-state meson nonets: uit,ud,us,di,dd,ds,si,sd,ss = defines Y and I3. For L=0, S,, = S;+5;=0,1
P, = P,P,(~1)F = =1 = 9 states with J” = 07, 9 states with J” = 17. 3 states at (Y,I3) = (0,0) = uii,dd, s5 conbinations.
Y=B+S

Y=S A A AO A" ATt

A Y=B+S '

K° K*

B EO O
| | | 1 L ]3 | | | | | | |
-1 -172 0 1721 =32 -1 -12 0 172 1 32

p_1" p_3"
F JP=3

=0

(4) Baryon supermultiplets. Ten q,q,q. configurations: uuu, uud, uus,ddu,dds,ddd, ssu,ssd,sss,uds = defines Y and I3.
e Pauli exclusion: hadron wave function must be antisymmetric under exchange of identical quarks. ®g = W(x)x;x,.

Xc is antisymmetric, W(x) is symmetric (L = 0) = W(x)x; must be symmetric = spin of identical quarks are parallel.
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Baryon Spin states TP — 10 baryons with %+, 8 baryons with %Jr.
At (Y,I5) = (0,0), 2 baryons (uds) with 37, At =
_ _113 1+ 3+ 3 2
qa9vqc (1ds) S“b3_ 0,1 :> Sabe =73:2/3 2 (§+’ 3 (1) uuu is an evidence of color (colors of uuu should
9aqaqa (uuu) S =5 (all spins are parallel) 5 (3 be distinct).
+ +
9a9a9b (uud) Sawa=1=Sap = %r% % (6) % (6)

(5) Hadron decays. If a hadron can decay via the strong interaction then its lifetime will be very short, O(1072%) s.

Gem |5 g ~ 1 for low mass hadron decays = fm ~ 104,
aS Tem TS

e Electromagnetic decay suppression. Rough rule:

2
e Weak decay suppression: My; ~ —% . This is equivalent to a suppression of ayy by a factor of m?,.
y supp f - q PP y w

w

e eg: 1 — pe V,: AE ~ 0.8 MeV < myy. Rough rule: &= =1077.

Qs

(7) Conservation laws: (8) Quark diagrams (1t*p —» A*™™ — t*p):

Interaction B Q S C B L L, L. JPe Z‘ N . Z-
Strong v v v v vV — — — v > <

Electromagnetic v v Vv V Vv Vv V V/ v s wN\P

Weak v vV o x x x v Vv Vv only] u N\ U

u u

(9) Forbidden interactions: Consider 71° — yyy. S, = Jyyy =0, Cro = (-1)HS =1, C,y =—1 = Forbidden.

_————

e In strong and EM interactions, quark flavour has to be conserved. In weak decay, the quarks can decay to lighter ones.

.S,C, B are all violated in weak interactions.

[SOERNW|

(10) Hadronic weak decays. Example: B® — D**7t~:

N/ ST NS

Particle Mass Constituents B S C B Y Q I3 1 Jre

d 4.7 MeV 1/3 0 0 0 1/3 —1/3 =2 12 1/t

u 2.2 MeV 1/3 0 o0 0 /3 /3 2 12 1F

s 96 MeV /3 -1 0 0 -23 -1/3 0 0 12t

c 1.3 GeV 1/3 0 1 0 4/3 23 0 0 12t

b 4 GeV 3 0 0 -1 -23 —1/3 0 0 1»t

t 172 GeV 1/3 0 0 0 4/3 2/3 0 0 12t

o, 70, 140,135MeV  ud, (uii,dd), di 0 0 0 0 0 1,0,-1 1,01 1 0,0

0 548, 978 MeV uil, dd, s§ 0 0 0 0 0 0 0 0 o0
K+, KO0 494, 498 MeV us, ds 0 1 0 0 1 1,0 12 12 0
K, K 494, 498 MeV s, ds 0 -1 0 0 -1 -1,0 Fi2 12 0

ot 0% 0™ 775MeV  ud, (ut,dd), du 0 0 0 0 0 1,0-1 1,0,-1 1 1~

¢ 1020 MeV ss 0 0 0 0 0 0 0o 0 1

w 782 MeV uil, dd 0 0 0 0 0 0 0 0 1~
D*,D° 1.8 GeV cd, cii 0 0 1 0 1 1,0 V2,12 12 0

p,n 938, 940 MeV uud 1 0 0 0 1 1,0 2 12 127

A 1.1 GeV uds 1 -1 0 0 0 0 0 0 12t

ry0x- 1.2 GeV uus, uds, dds 1 -1 0 0 0 1,0,-1 1,0,-1 1 1/F

=0, 2" 1.3 GeV dss, uss 1 -2 0 0 -1 0,-1 *l/2 12 12F

AT, AT, A0, A 1.2GeV  uuu,uud,udd,ddd 1 0 0 0 1 2,1,0,-1 432,412 32 3t

Q- 1.7 GeV sss 1 -3 0 0 -2 -1 0 0 3~

e Other mesons: B*, B?, Bg, Bf: ub, db, sb, cb. D*, DY, D;: cd, cii, cs.

VI. Electroweak interaction

(1) All leptons and quarks experience the weak interaction. Exchange particles: W, Z.

my = 80.4 GeV, my =91.2 GeV.
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b
(2) Neutral current: \S(/ \S(/ \\{/ . Q,L and quark flavour are conserved.
Zy
+ v’,{
(3) Charged current: H>// J}/ \{\ . The quark flavour is not conserved.
w+ w wt

(4) Discovery of the W and Z bosons.

The W and Z were discovered at the SppS (Super-Proton-Antiproton-Synchrotron). Collided pp have /s ~ 540 GeV, which is much
higher than myy/my as the quarks that are colliding carry only a fraction of the proton energy.

The signature of a W or Z boson is an object with high transverse momentum, where the background is from the break-up of
colliding protons which tend to travel in the longitudinal direction. When a new heavy particle is produced, it will typically be at
rest and therefore the decay products travel at a large angle to the beam (back-to-back for 2 two decay products).

U d u d
° Production: >/\/\/\ 7 >\/\/\ 7 >/\/\ W+ >/\A, W-
iz d d u

e The W/Z boson has lifetime ~ 1072%s and decays before reaching the detector, so we can only detect decay products.

e U LT Ve Vi Ve u,d,c,s,b tout, Tt W u,c

«,\Z/\A< «,\Z,v\< V\A,\< (leptonic and hadronic).
e pn T VeV Ve w,d,5,5,b Ver Vi Ve a3

e Experimental signature of the Z.

Process Signature Comment

Z vy Invisible Impossible

W/Z — qq Two back-to-back jets Hard because of hadronic backgrounds
Z —ete” Two showers in the ECAL + tracks Best channel

Z—-ptu Muon detector + tracks Best channel

Z -ttt T decays before reaching the detector Very difficult

W — lvj(not T) High p7 lepton and missing transverse momentum Best channel

e It is difficult to measure the W boson mass since the longitudinal momentum cannot be measured.
2 E ;
)" =5 2Eq ERSS - 2pr - pRISS = 2B ERI(1 - C0S b miss)-

, where the denominator contains the resonance term and the damping term.

° mW (ETZ +Emlss) (PT ’ +pI%IISS

(5) Breit-Wigner function: ¢ o

N S
(E=M,)?>+T2/4
(6) Common weak interaction process.

e e e e Y Y o Vu W

e Electron scattering;: 7?2V ,ete annihilation: Z . Neutrino scattering: 7 , W
14
- - e’ I ++

e e d(p) d(p) dlp)  u(A™)

e Charged pion decay: 7" — p*v,. " is the lightest charged meson = cannot decay via the strong force.
e e, u,d
w- w-
e u/7 lifetimes: 2.2 us/290 fs. p~ V,, T Ve, ViU (1-prong). T — vy + 1~ + 1t + 7~ (3-prong).
vy Vr

(7) Lepton universality: The coupling strength of W/Z to a lepton is independent of the lepton flavour.

e W™ —e v, W — pv,, W — v, have the same coupling strength.

(8) Lepton-quark symmetry: The coupling strength of a W to quarks is the same as the coupling strength of W to a lepton.
— Hadronic decays W~ — ud, W~ — ¢s have 3 times higher probability than leptonic decays (color factor).
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e Estimated t decay branching ratios: e"v,, y’?w hadrons have 1:1: 3.

e Estimated W decay branching ratios: e7v,, y‘?w ™., du,schave1:1:1:3:3.

(9) Decay rate I = 2AE = % = % in natural units. Partial decay width I'(X — Y) =L«(X) - B(X = Y).

(10) The matrix element [M] = [E]"%, [I'] = [K][M?] = [K][E]™* = [K] = [E]® = K o« m} = T() o< m3, T () oc m3.

- v - v B(u —ev,v B(u —ev,v - v
o7, = T 1 _ B(T__)m_’evr) o B(z —)gvevr), — 1 — (”7 _e 14) o (” = e l'f) = T _ B(t~—>evevy) 1 =1.328%x 10" 7.
tot (T) L(t~—ev,vy) my " Lot (1) 1"(;4 —>evevl,) my Tu (;4 —>ev3v,,) m>

e Lepton universality: T'(Z — ptp )/ T(Z - eTe )= 1,T(Z 5 717 )/T(Z — e*e) = 1.

W-
(10) Decays of strange particles: s 4>—< . Typical strong, weak process lifetime: O(10723), O(10719).
u

u u
u V;A 7 T
+ 7 od 7 - d
o K*(u3) lifetime 1.24 x 10785 = weak decay. >r\v/vvv< , Lsf , 1; et -
. + < : u ’ Q ;:
$ U i v,
)

Branching ratios: K™ — p*v, (63.55%), K* — 10 (20.66%), K+ — 1%* v, (5.07%).
d Ve
A%(uds) w- — 0 DO(cu) w- +
u ) = 9 e
e |2.63%x10710s s—o—l—"fju ,[B(A P ) 6“’} 41x10"13s —.—H—J.fs B(D® — K-¢*v,) ~ 3.5%.

B(AO 0y — 369 | ¢ = 7
1115.7 MeV | 4 4 (BIAT =) =36%] | 8608 Mev ] "
(11) Cabibbo mixing. Nicola Cabibbo attempted to explain two observations: (i) The strong force cannot change the quark
flavour. (ii) The weak charged current can change the quark flavour.

e Cabibbo’s model: the strong interaction couples to the d,u,s,c quarks, whereas the W couples to a different set of quark

cigenstates [ | and , where ') _(cosOc sinOc)(d) fu) " ‘1= ¢
8 d’ s")] \=sinOc sinOc/\s/ \d’] \dcosOc+ssinOc) \s’)  \scosOc —dsinOc )

° ,\,V\v:,\<u ,\,\N\< ,\,\N< . Experimentally cos?O¢ = 0.949, sin GC 0.051, 6 =13.1°.
E,

cosBc sinf¢

e Similarly, W* — ¢s’ contains W — cd with an amplitude factor of —sin 8.

F[K’(sﬂ)—m’ 17;‘]ocsin2 Oc

e Measurement of 0. o tan®Oc.

I[r(dit)—>p~ 17,4]occos2 Oc

da W -4 W _
R ’,{ NI
(12) Flavour changing neutral current K® — u*p~ u Avyu , c AV . The total amplitude is cos O sin O -
o + o +
sow P Tsow

cosOcsinO¢c = 0 is called the GIM mechanism.
d u,c, t S

—_—T . R . e
(13) Kaon mixing. Wo'w - K®and K" can transform into each other. C|KO> = —’K0>, C‘K > |K0> > |K0>,
_4;4_;4_
s uct 4
15|F> ‘K >:>CP(K° |K > CP| > |K0) = Bigenstates [K,) = 2[|K0)+‘E°>], |K2):%[|K0>—|EO>].
oAneutral kaon can decay to 7", 7070, nOn*~, nOnOx0 (lightest hadrons). The kaon has spin 0.
e %70. JP 10" -0 +0"=L=0.P =P~ )—1c c2—1:>cp( 70) = +1.

et .L=0.P=P}-1)F =1. C(r*n) = P(*n) = (-1)! = 1. Here C,Phavethesameeffect:>CP(n+n‘):+1

o 7'71°7t%. Define L, to be the angular momentum of °7® and L3 the angular momentum of 7% about the c.o.m. of

010 = le +L3=0= L1, =L3. P=P(-1)l2(-1)3 =-1. C=C3; =1 = CP(n"n"n¥) = -1.
et n’. P=~-1. C=C(n®)C(rc*r™) = P(*7”) = (=1)112 = 1 (experimentally determined L, = 0). CP(rc* 7t %) = —1.
e K; decays into two-pion final states, large mass difference = big phase space = short lifetime = K—short (Ks).
e In the K, decays, there is much less phase space available = long life time = K-long (K}).
d’ Ve Vs Vup)(d cosOc sinOc  0)(d
(14) The CKM matrix | s’ |=| Vg Vs V|l s|x|-sin6c cosOc Of s | [Vupl> *2x1072, |V [> 2 x 1073,
b’ Vie Vis Vi )\b 0 0 10D
e The vertex b — uW~ gains a vertex amplitude of V,;. The probability of this process is proportional to |V, b2
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e Any decay of a b quark is suppressed and the lifetime of b is long = A meson containing b will travel a few millimetres
before decaying = secondary vertex.

(15) The t quark being heavy = short lifetime = cannot hadronize.

7.5 Neutrinos

(1) Neutrinos are the second most abundant particle in the universe. y: 400 cm~3, v: 300 cm~3, p: 0.5 cm ™3

(2) Interaction with matter: d(n) + v, — u(p) + e, with cross section 107#3 ¢cm?

(3) The interaction rate W = Jno, where J is the particle flux, n the number of target particles, o the cross section.

e The SNO detector contains 1000 t D,O. o, p = 0.4 x 10742 cm? for 1 MeV v,. ] = 4.94x10° cm™2s™! (from sun) =
W =1.18x10"* s7! = 3736 interactions per year.

(4) Additional neutrinos. The width of the Z boson depends on the number of decay modes. The more decay modes, the
shorter the lifetime and therefore larger width. I = Tpe + I}, + Lig + Thaa + Ny Ly -

(5) Helicity. If the spin and the direction of motion align/anti-align, then it’s right/left—handed.

e Neutrinos can only be left-handed, and antineutrinos can only be right—handed.

(6) The weak interaction preferentially couples to left—handed particles and right—handed antiparticles. The chance of the
weak interaction coupling to either a right-handed particle or a left—-handed particle oc m?.

e Consider charged pion decay. ¥; «— = — [~. Pion spin is 0, v; must be right—-handed = lepton must be right—handed

BR( —e™v) _ m_z(ﬂ)2 =1.3x107%.

BR(r™—=pvy) — mi \ mE-m;

to conserve angular momentum.
(7) Cosmic rays interact with the upper atomsphere, producing showers of hadrons " — v, + u" > v, +e" +v, +V,
= Flavour ratio 2: 1 of v, : v,. Neutrinos that have traveled the full diameter of the earth have ratio 1 : 1 = Oscillations.

e A massless neutrino would be infinitely time-dilated = could not change. Neutrino oscillation = neutrinos have mass.
7.6 Misc

(1) @em =7.3x1073, @, = 4.2 x 1073 = comparable. At high energies strength of EM and weak unify.

(2) GSW unify the electroweak interaction by introducing a weak isospin T.

e left—handed doublets (TT: 1/211?313: _{;2) : (ZeLL ), (:f'LL ), (VTL ), (ZLL:SCLL:Z) Right-handed particles form T = 0 singlets.
e Wboson has T = 1. T3(W~) = -1, T3(W*) = +1. GSW predicted the existence of W° with T3 = 0 (Z,).

e Charged current weak interactions raise or lower T3 by 1. e~ - v, W™, —% N +%,—1

2
(3) Unification condition. \/e_ gw sin Oy = gz cos Oy, cos Oy = M . Measurements: ﬁ = G—Z =tan? Oy, Oy ~ 30°.

(4) The Higgs mechanism states that the Higgs field permeates all space and gives masses to particles.
e Coupling strength between a fermion and the Higgs field g7f = \/—gme—f

(5) The Higgs boson was predicted to have spin 0, parity +1 and [(H — f f) « ngf o m

(6) Higgs production and decay i}> --H H-- Q:: {:/E:: . Massless particles don’t couple

directly to the Higgs and go through a virtual loop. The top quark is heavy and couples to the Higgs strongly.

Channels Comment Channels Comment

Although the branching ratio is small,
the backgrounds are low and is a clean channel

H — ZZ — I"I"I"I". The channel is useful when
H —gg Hadronic background H —ZZ  both Z decay to leptons since high pr leptons
are hard to produce through a background process

H—bb Hadronic background H — yy

T leptons decay before HoWW If W decays to quarks = Hadronic background.

H—- 1t . .- .
reaching the detector If W decays to leptons = Invisible neutrinos.

(7) The coupling strength of the electroweak and strong interactions meet at 10'> GeV = Grand Unification.
(8) The W and Z bosons have masses close to the energy at which the unification occurs (90 GeV) and the bosons are able to
change particle types within doublets (v,, e7) and (u#,d). The GUT predicts the X and Y bosons.

d
e X,Y have charge —3 and — and can change particle types within triplets ( ) d—oetX,d-ve Y, X —ii, X —>de.
Ve

e Search for X boson: p — e*7e® (u+u+d X, et +uU+u).
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(9) Less than 10733 s after the Big Bang, the energy was greater than 10'> GeV. The following process can happen with CP
violation: X — 3g < X — gq, X — gl > X — gl. The g7 and I] pairs annihilate and result in matter-antimatter asymmetry.
(10) Sakharov conditions for matter-antimatter asymmetry.
e Baryon number violation, C—violation and CP-violation, Interactions out of thermal equilibrium (X — gg,9q — X).

N

o In the universe today 222> ~ 107,

photons
7.7 Natural units
(1) Planck constant in SI units: 7i=1.054x1073%J.5s=6.582x 10710 eV -s. fic ~ 197 MeV - fm.
2) Natural units: c=h=1, 1s=3x 108 m.

(
(3)1]=1kg o D2 g ). m’
(

kg=1eV=1.6x10"1"7]=1.78x1073% kg.

m _ 1
(3x108m)2 ~ 9x101°6
1=1fm=5.08GeVl.

natural

4) hc ~ 0.197 GeV - fm




